[1] 夏永泉, 王兵, 支俊, 等. 基于随机森林方法的小麦叶片病害识别研究[J]. 图学学报, 2018, 39(1):57-62.(XIA Y Q,WANG B, ZHI J,et al. Identification of wheat leaf disease based on random forest method[J]. Journal of Graphics,2018,39(1):57-62.) [2] 王聃, 柴秀娟. 机器学习在植物病害识别研究中的应用[J]. 中国农机化学报, 2019, 40(9):171-180.(WANG D,CHAI X J. Application of machine learning in plant diseases recognition[J]. Journal of Chinese Agricultural Mechanization,2019,40(9):171-180.) [3] 陈国军, 程琰, 曹岳, 等. 基于目标特征的植株深度图像修复[J]. 图学学报, 2019, 40(3):460-465.(CHEN G J,CHENG Y,CAO Y,et al. Plant depth maps recovery based on target features[J]. Journal of Graphics,2019,40(3):460-465.) [4] GUETTARI N,CAPELLE-LAIZÉ A S,CARRÉ P. Blind image steganalysis based on evidential k-nearest neighbors[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway:IEEE,2016:2742-2746. [5] DEEPA S,UMARANI R. Steganalysis on images using SVM with selected hybrid features of Gini index feature selection algorithm[J]. International Journal of Advanced Research in Computer Science,2017,8(5):1503-1509. [6] RAMEZANI M,GHAEMMAGHAMI S. Towards genetic feature selection in image steganalysis[C]//Proceedings of the 2010 7th IEEE Consumer Communications and Networking Conference. Piscataway:IEEE,2010:1-4. [7] SHEIKHAN M, PEZHMANPOUR M, MOIN M S. Improved contourlet-based steganalysis using binary particle swarm optimization and radial basis neural networks[J]. Neural Computing and Applications,2012,21(7):1717-1728. [8] KODOVSKY J,FRIDRICH J,HOLUB V. Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on Information Forensics and Security,2011,7(2):432-444. [9] GUO Y, HASTIE T, TIBSHIRANI R. Regularized linear discriminant analysis and its application in microarrays[J]. Biostatistics,2007,8(1):86-100. [10] ZHANG S,WANG Z. Cucumber disease recognition based on global-local singular value decomposition[J]. Neurocomputing, 2016,205:341-348. [11] ZHANG S,WU X,YOU Z,et al. Leaf image based cucumber disease recognition using sparse representation classification[J]. Computers and Electronics in Agriculture,2017,134:135-141. [12] MOHANTY S P,HUGHES D P,SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science,2016,7:Article No. 1419. [13] MA J, DU K, ZHENG F, et al. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network[J]. Computers and Electronics in Agriculture,2018,154:18-24. [14] KAWASAKI Y,UGA H,KAGIWADA S,et al. Basic study of automated diagnosis of viral plant diseases using convolutional neural networks[C]//Proceedings of the 2015 International Symposium on Visual Computing,LNCS 9475. Cham:Springer, 2015:638-645. [15] HOWARD A G,ZHU M,CHEN B,et al. MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2020-07-14]. https://arxiv.org/pdf/1704.04861.pdf. [16] LIN M,CHEN Q,YAN S. Network in network[EB/OL].[2020-07-21]. https://arxiv.org/pdf/1312.4400.pdf. [17] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 201532nd International Conference on Machine Learning. New York:JMLR. org,2015:448-456. [18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-07-15]. https://arxiv.org/pdf/1409.1556.pdf. [19] HUGHES D P,SALATHÉ M. An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing[EB/OL].[2020-07-17]. https://arxiv.org/ftp/arxiv/papers/1511/1511.08060.pdf. [20] DARWISH A,EZZAT D,HASSANIEN A E. An optimized model based on convolutional neural networks and orthogonal learning particle swarm optimization algorithm for plant diseases diagnosis[J]. Swarm and Evolutionary Computation,2020,52:Article No. 100616. [21] KC K,YIN Z,WU M,et al. Depthwise separable convolution architectures for plant disease classification[J]. Computers and Electronics in Agriculture,2019,165:Article No. 104948. |