[1] SHI W,CABALLERO J,LEDIG C,et al. Cardiac image superresolution with global correspondence using multi-atlas PatchMatch[C]//Proceedings of the 2013 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 8151. Berlin:Springer,2013:9-16. [2] ZHANG L, ZHANG H, SHEN H, et al. A super-resolution reconstruction algorithm for surveillance images[J]. Signal Processing,2010,90(3):848-859. [3] 王一宁, 秦品乐, 李传朋, 等. 基于残差神经网络的图像超分辨率改进算法[J]. 计算机应用,2018,38(1):246-254.(WANG Y N,QIN P L,LI C P,et al. Improved algorithm of image super resolution based on residual neural network[J]. Journal of Computer Applications,2018,38(1):246-254.) [4] YANG J,WRIGHT J,HUANG T,et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing,2010,19(11):2861-2873. [5] TIMOFTE R,DE SMET V,VAN GOOL L. A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Proceedings of the 2014 Asian Conference on Computer Vision,LNCS 9006. Cham:Springer,2014:111-126. [6] DONG C,LOY C C,HE K,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307. [7] WANG Z,LIU D,YANG J,et al. Deep networks for image superresolution with sparse prior[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:370-378. [8] DONG C,LOY C C,TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9906. Cham:Springer,2016:391-407. [9] KIM J,LEE J K,LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1646-1654. [10] 李现国, 孙叶美, 杨彦利, 等. 基于中间层监督卷积神经网络的图像超分辨率重建[J]. 中国图象图形学报,2018,23(7):984-993. (LI X G,SUN Y M,YANG Y L,et al. Image superresolution reconstruction based on intermediate supervision convolutional neural networks[J]. Journal of Image and Graphics, 2018,23(7):984-993.) [11] 刘月峰, 杨涵晰, 蔡爽, 等. 基于改进卷积神经网络的单幅图像超分辨率重建方法[J]. 计算机应用,2019,39(5):1440-1447. (LIU Y F,YANG H X,CAI S,et al. Single image superresolution reconstruction method based on improved convolutional neural network[J]. Journal of Computer Applications,2019,39(5):1440-1447.) [12] WANG Y,WANG L,WANG H,et al. End-to-end image superresolution via deep and shallow convolutional networks[J]. IEEE Access,2019,7:31959-31970. [13] SCHULTER S,LEISTNER C,BISCHOF H. Fast and accurate image upscaling with super-resolution forests[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3791-3799. [14] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al. Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 2012 British Machine Vision Conference. Durham:BMVA Press,2012:No. 135. [15] ZEYDE R,ELAD M,PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 2010 International Conference on Curves and Surfaces,LNCS 6920. Berlin:Springer,2010:711-730. [16] MARTIN D,FOWLKES C,TAL D,et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE Conference on Computer Vision. Piscataway:IEEE,2001:416-423. [17] HUANG J B, SINGH A, AHUJA N. Single image superresolution from transformed self-exemplars[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:5197-5206. [18] HE K M,ZHANG X Y,REN S Q,et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 International Conference on Computer Vision. Piscataway:IEEE,2015:1026-1034. [19] 孙叶美. 基于卷积神经网络的图像超分辨率重建算法研究[D]. 天津:天津工业大学,2019:35-38. (SUN Y M. Research on image super-resolution reconstruction algorithms based on convolutional neural network[D]. Tianjin:Tianjin Polytechnic University,2019:35-38.) [20] 郭业才, 朱文军. 基于深度卷积神经网络的运动模糊去除算法[J]. 南京理工大学学报(自然科学版),2020,44(3):303-312. (GUO Y C,ZHU W J. Motion deblurring algorithm based on deep convolutional neural network[J]. Journal of Nanjing University of Science and Technology,2020,44(3):303-312.) |