Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (8): 2273-2287.DOI: 10.11772/j.issn.1001-9081.2020101638
Special Issue: 综述; 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
CAO Yuhong1, XU Hai2, LIU Sun'ao2, WANG Zixiao2, LI Hongliang3
Received:
2020-10-21
Revised:
2021-01-13
Online:
2021-01-27
Published:
2021-08-10
Supported by:
通讯作者:
李宏亮
作者简介:
曹玉红(1968-),女,河北平山人,高级工程师,博士,主要研究方向:计算机视觉、人工智能;徐海(1993-),男,江西乐平人,博士研究生,主要研究方向:计算机视觉、人工智能、语义分割;刘荪傲(1997-),男,山东青岛人,硕士研究生,主要研究方向:计算机视觉、人工智能、语义分割;王紫霄(1999-),男,河北石家庄人,硕士研究生,主要研究方向:计算机视觉、人工智能、半监督学习;李宏亮(1987-),男,河南安阳人,工程师,博士,主要研究方向:计算机视觉、计算成像。
基金资助:
CLC Number:
CAO Yuhong, XU Hai, LIU Sun'ao, WANG Zixiao, LI Hongliang. Review of deep learning-based medical image segmentation[J]. Journal of Computer Applications, 2021, 41(8): 2273-2287.
曹玉红, 徐海, 刘荪傲, 王紫霄, 李宏亮. 基于深度学习的医学影像分割研究综述[J]. 《计算机应用》唯一官方网站, 2021, 41(8): 2273-2287.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020101638
[1] DOI K. Computer-aided diagnosis in medical imaging:historical review, current status and future potential[J]. Computerized Medical Imaging and Graphics,2007,31(4/5):198-211. [2] PHAM D L,XU C Y,PRINCE J L. Current methods in medical image segmentation[J]. Annual Review of Biomedical Engineering,2000,2:315-337. [3] MUTHUKRISHNAN R,RADHA M. Edge detection techniques for image segmentation[J]. International Journal of Computer Science and Information Technology,2011,3(6):259-267. [4] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics,1979, 9(1):62-66. [5] KAGANAMI H G,ZOU B J. Region-based segmentation versus edge detection[C]//Proceedings of the 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Piscataway:IEEE,2009:1217-1221. [6] PATIL D D,DEORE S G. Medical image segmentation:a review[J]. International Journal of Computer Science and Mobile Computing,2013,2(1):22-27. [7] HE K M,ZHANG X Y,REN S Q,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [8] SIMONYAN K,ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-10-10]. https://arxiv.org/pdf/1409.1556.pdf. [9] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [10] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [11] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3431-3440. [12] MA Y H,HAO H Y,XIE J Y,et al. ROSE:a retinal OCTangiography vessel segmentation dataset and new model[J]. IEEE Transactions on Medical Imaging,2021,40(3):928-939. [13] MILLETARI F, NAVAB N, AHMADI S A. V-Net:fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision. Piscataway:IEEE,2016:565-571. [14] RONNEBERGER O, FISCHER P, BROX T. U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer,2015:234-241. [15] XU H,XIE H T,LIU Y Z,et al. Deep cascaded attention network for multi-task brain tumor segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11766. Cham:Springer,2019:420-428. [16] CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05)[2020-10-10]. https://arxiv.org/pdf/1706.05587.pdf. [17] CHEN L C,ZHU Y K,PAPANDREOU G,et al. Encoderdecoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham:Springer, 2018:833-851. [18] ÇIÇEK Ö,ABDULKADIR A,LIENKAMP S S,et al. 3D u-net:learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9901. Cham:Springer,2016:424-432. [19] PERONE C S, COHEN-ADAD J. Deep semi-supervised segmentation with weight-averaged consistency targets[C]//Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis/2018 International Workshop on Multimodal Learning for Clinical Decision Support,LNCS 11045. Cham:Springer,2018:12-19. [20] YU L Q,WANG S J,LI X M,et al. Uncertainty-aware selfensembling model for semi-supervised 3D left atrium segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11765. Cham:Springer,2019:605-613. [21] LI X M,YU L Q,CHEN H,et al. Semi-supervised skin lesion segmentation via transformation consistent self-ensembling model[C]//Proceedings of the 2018 British Machine Vision Conference. Durham:BMVA Press,2018:No. 0162. [22] SONG Y Q,ZHANG C S,LEE J G,et al. Semi-supervised discriminative classification with application to tumorous tissues segmentation of MR brain images[J]. Pattern Analysis and Applications,2009,12(2):99-115. [23] XU K,SU H,ZHU J,et al. Neuron segmentation based on CNN with semi-supervised regularization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE,2016:1324-1332. [24] YI X,WALIA E,BABYN P. Generative adversarial network in medical imaging:a review[J]. Medical Image Analysis,2019, 58:No. 101552. [25] SWILER L P,GIUNTA A A. Aleatory and epistemic uncertainty quantification for engineering applications:SAND2007-2670C[R]. Albuquerque,NM:Sandia National Laboratories,2007. [26] LAKSHMINARAYANAN B,PRITZEL A,BLUNDELL C. Simple and scalable predictive uncertainty estimation using deep ensembles[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2017:6405-6416. [27] GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation:Representing model uncertainty in deep learning[C]//Proceedings of the 33rd International Conference on Machine Learning. New York:JMLR. org,2016:1050-1059. [28] ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al. UNet++:a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis/2018 International Workshop on Multimodal Learning for Clinical Decision Support,LNCS 11045. Cham:Springer,2018:3-11. [29] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [30] ZHOU C H,CHEN S C,DING C X,et al. Learning contextual and attentive information for brain tumor segmentation[C]//Proceedings of the 2018 International MICCAI Brainlesion Workshop,LNCS 11384. Cham:Springer,2018:497-507. [31] WANG X L,GIRSHICK R,GUPTA A,et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [32] HE X,YANG S B,LI G B,et al. Non-local context encoder:robust biomedical image segmentation against adversarial attacks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:8417-8424. [33] MENZE B H,JAKAB A,BAUER S,et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging,2014,34(10):1993-2024. [34] ZHOU C H,DING C X,WANG X C,et al. One-pass multi-task networks with cross-task guided attention for brain tumor segmentation[J]. IEEE Transactions on Image Processing,2020, 29:4516-4529. [35] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [36] DAI J F,QI H Z,XIONG Y W,et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:764-773. [37] WANG G T,LI W Q,OURSELIN S,et al. Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks[C]//Proceedings of the 2017 International MICCAI Brainlesion Workshop,LNCS 10670. Cham:Springer,2017:178-190. [38] LIU S A, XU H, LIU Y Z, et al. Improving brain tumor segmentation with dilated pseudo-3D convolution and multidirection fusion[C]//Proceedings of the 2020 International Conference on Multimedia Modeling, LNCS 11961. Cham:Springer,2020:727-738. [39] GUO X N,XIE H T,XU H,et al. Global context and boundary structure-guided network for cross-modal organ segmentation[J]. Information Processing and Management, 2020, 57(4):No. 102252. [40] QIU Z F,YAO T,MEI T. Learning spatio-temporal representation with pseudo-3D residual networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:5534-5542. [41] JIANG Z Y,DING C X,LIU M F,et al. Two-stage cascaded UNet:1st place solution to BraTS challenge 2019 segmentation task[C]//Proceedings of the 2019 International MICCAI Brainlesion Workshop,LNCS 11992. Cham:Springer,2019:231-241. [42] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2999-3007. [43] SUDRE C H,LI W Q,VERCAUTEREN T,et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[C]//Proceedings of the 2017 International Workshop on Deep Learning in Medical Image Analysis/2017 International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 10553. Cham:Springer, 2017:240-248. [44] REN X H,AHMAD S,ZHANG L C,et al. Task decomposition and synchronization for semantic biomedical image segmentation[J]. IEEE Transactions on Image Processing,2020,29:7497-7510. [45] LIU S A,GUO X N. Improving brain tumor segmentation with multi-direction fusion and fine class prediction[C]//Proceedings of the 2019 International MICCAI Brainlesion Workshop, LNCS 11992. Cham:Springer,2019:349-358. [46] ISENSEE F,PETERSEN J,KLEIN A,et al. nnU-Net:selfadapting framework for U-Net-based medical image segmentation[EB/OL]. (2018-09-27)[2020-10-10]. https://arxiv.org/pdf/1809.10486.pdf. [47] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:448-456. [48] WU Y X,HE K M. Group normalization[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11217. Cham:Springer,2018:3-19. [49] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization:the missing ingredient for fast stylization[EB/OL]. (2017-11-06)[2020-10-10]. https://arxiv.org/pdf/1607.08022.pdf. [50] BA J L,KIROS J R,HINTON G E. Layer normalization[EB/OL]. (2016-07-21)[2020-10-10]. https://arxiv.org/pdf/1607.06450.pdf. [51] MAAS A L,HANNUN A Y,NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning. New York:JMLR. org,2013:3. [52] HE K M,ZHANG X Y,REN S Q,et al. Delving deep into rectifiers:Surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1026-1034. [53] MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regularization[C]//Proceedings of the 2018 International MICCAI Brainlesion Workshop, LNCS 11384. Cham:Springer,2018:311-320. [54] RAJCHL M,LEE M C H,OKTAY O,et al. DeepCut:object segmentation from bounding box annotations using convolutional neural networks[J]. IEEE Transactions on Medical Imaging, 2017,36(2):674-683. [55] KAMNITSAS K,BAI W J,FERRANTE E,et al. Ensembles of multiple models and architectures for robust brain tumour segmentation[C]//Proceedings of the 2017 International MICCAI Brainlesion Workshop,LNCS 10670. Cham:Springer,2017:450-462. [56] BAI W J,OKTAY O,SINCLAIR M,et al. Semi-supervised learning for network-based cardiac MR image segmentation[C]//Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10434. Cham:Springer,2017:253-260. [57] TANG M,VALIPOUR S,ZHANG Z C,et al. A deep level set method for image segmentation[C]//Proceedings of the 2017 International Workshop on Deep Learning in Medical Image Analysis/2017 International Workshop on Multimodal Learning for Clinical Decision Support,LNCS 10553. Cham:Springer,2017:126-134. [58] PENG J Z,ESTRADA G,PEDERSOLI M,et al. Deep cotraining for semi-supervised image segmentation[J]. Pattern Recognition,2020,107:No. 107269. [59] XIA Y D,YANG D,YU Z D,et al. Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation[J]. Medical Image Analysis, 2020, 65:No. 101766. [60] ZHOU Y Y,WANG Y,TANG P,et al. Semi-supervised 3D abdominal multi-organ segmentation via multi-planar co-training[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2019:121-140. [61] KERVADEC H,DOLZ J,GRANGER É,et al. Curriculum semisupervised segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 11765. Cham:Springer, 2019:568-576. [62] MIN S B,CHEN X J. A robust deep attention network to noisy labels in semi-supervised biomedical segmentation[EB/OL]. (2018-07-31)[2020-10-10]. https://arxiv.org/pdf/1807.11719v1.pdf. [63] BORTSOVA G, DUBOST F, HOGEWEG L, et al. Semisupervised medical image segmentation via learning consistency under transformations[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 11769. Cham:Springer,2019:810-818. [64] LI X M,YU L Q,CHEN H,et al. Transformation-consistent selfensembling model for semisupervised medical image segmentation[J]. IEEE Transactions on Neural Networks and Learning Systems,2021,32(2):523-534. [65] LAINE S,AILA T. Temporal ensembling for semi-supervised learning[EB/OL]. (2017-03-15)[2020-10-10]. https://arxiv.org/pdf/1610.02242.pdf. [66] TARVAINEN A,VALPOLA H. Mean teachers are better role models:weight-averaged consistency targets improve semisupervised deep learning results[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:1195-1204. [67] CHEN S,BORTSOVA G,GARCÍA-UCEDA JUÁREZ A,et al. Multi-task attention-based semi-supervised learning for medical image segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 11766. Cham:Springer,2019:457-465. [68] BAUR C,ALBARQOUNI S,NAVAB N. Semi-supervised deep learning for fully convolutional networks[C]//Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention,LNCS 10435. Cham:Springer, 2017:311-319. [69] WESTON J,RATLE F,MOBAHI H,et al. Deep learning via semi-supervised embedding[M]//MONTAVON G,ORR G B, MÜLLER K R. Neural Networks:Tricks of the Trade,LNCS 7700.2nd ed. Berlin:Springer,2012:639-655. [70] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [71] CHAITANYA K,KARANI N,BAUMGARTNER C F,et al. Semi-supervised and task-driven data augmentation[C]//Proceedings of the 2019 International Conference on Information Processing in Medical Imaging,LNCS 11492. Cham:Springer, 2019:29-41. [72] MONDAL A K,DOLZ J,DESROSIERS C. Few-shot 3D multimodal medical image segmentation using generative adversarial learning[EB/OL]. (2018-10-29)[2020-10-10]. https://arxiv.org/pdf/1810.12241.pdf. [73] ZHANG Y Z,YANG L,CHEN J X,et al. Deep adversarial networks for biomedical image segmentation utilizing unannotated images[C]//Proceedings of the 2017 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 10435. Cham:Springer,2017:408-416. [74] NIE D,GAO Y Z,WANG L,et al. ASDNet:attention based semi-supervised deep networks for medical image segmentation[C]//Proceedings of the 2018 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11073. Cham:Springer,2018:370-378. [75] ZHOU Y,HE X D,HUANG L,et al. Collaborative learning of semi-supervised segmentation and classification for medical images[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:2074-2083. [76] ROSS T,ZIMMERER D,VEMURI A,et al. Exploiting the potential of unlabeled endoscopic video data with self-supervised learning[J]. International Journal of Computer Assisted Radiology and Surgery,2018,13(6):925-933. [77] MERTIKOPOULOS P, MOUSTAKAS A L. Learning in an uncertain world:MIMO covariance matrix optimization with imperfect feedback[J]. IEEE Transactions on Signal Processing, 2016,64(1):5-18. [78] KENDALL A,GAL Y. What uncertainties do we need in bayesian deep learning for computer vision?[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:5580-5590. [79] GAL Y,ISLAM R,GHAHRAMANI Z. Deep Bayesian active learning with image data[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:1183-1192. [80] RUPPRECHT C,LAINA I,DIPIETRO R,et al. Learning in an uncertain world:representing ambiguity through multiple hypotheses[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:3591-3600. [81] KOHL S, ROMERA-PAREDES B, MEYER C, et al. A probabilistic U-Net for segmentation of ambiguous images[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2018:6965-6975. [82] BAUMGARTNER C F,TEZCAN K C,CHAITANYA K,et al. PHiSeg:capturing uncertainty in medical image segmentation[C]//Proceedings of the 2019 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 11765. Cham:Springer,2019:119-127. [83] LOPEZ R, REGIER J, JORDAN M I, et al. Information constraints on auto-encoding variational Bayes[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc., 2018:6117-6128. [84] BLUNDELL C, CORNEBISE J, KAVUKCUOGLU K, et al. Weight uncertainty in neural networks[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:1613-1622. [85] KINGMA D P,SALIMANS T,WELLING M. Variational dropout and the local reparameterization trick[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:2575-2583. [86] JOSKOWICZ L, COHEN D, CAPLAN N, et al. Automatic segmentation variability estimation with segmentation priors[J]. Medical Image Analysis,2018,50:54-64. [87] WANG G T,LI W Q,AERTSEN M,et al. Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks[J]. Neurocomputing,2019,338:34-45. [88] SINGH A,NOWAK R D,ZHU X J. Unlabeled data:now it helps,now it doesn' t[C]//Proceedings of the 21st International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2009:1513-1520. |
[1] | CHEN Chengrui, SUN Ning, HE Shibiao, LIAO Yong. Deep learning-based joint channel estimation and equalization algorithm for C-V2X communications [J]. Journal of Computer Applications, 2021, 41(9): 2687-2693. |
[2] | MAO Mingze, CAO Ruihao, YAN Chungang. Semi-supervised classification algorithm based on weight diversity [J]. Journal of Computer Applications, 2021, 41(9): 2473-2480. |
[3] | WANG Hebing, ZHANG Chunmei. Facial landmark detection based on ResNeXt with asymmetric convolution and squeeze excitation [J]. Journal of Computer Applications, 2021, 41(9): 2741-2747. |
[4] | ZHENG Zhiqiang, HU Xin, WENG Zhi, WANG Yuhe, CHENG Xi. Cattle eye image feature extraction method based on improved DenseNet [J]. Journal of Computer Applications, 2021, 41(9): 2780-2784. |
[5] | XIE Defeng, JI Jianmin. Syntax-enhanced semantic parsing with syntax-aware representation [J]. Journal of Computer Applications, 2021, 41(9): 2489-2495. |
[6] | DAI Yurou, YANG Qing, ZHANG Fengli, ZHOU Fan. Trajectory prediction model of social network users based on self-supervised learning [J]. Journal of Computer Applications, 2021, 41(9): 2545-2551. |
[7] | ZHANG Shipeng, LI Yongzhong, DU Xiangtong. Intrusion detection model based on semi-supervised learning and three-way decision [J]. Journal of Computer Applications, 2021, 41(9): 2602-2608. |
[8] | SONG Zhongshan, LIANG Jiarui, ZHENG Lu, LIU Zhenyu, TIE Jun. Remote sensing scene classification based on bidirectional gated scale feature fusion [J]. Journal of Computer Applications, 2021, 41(9): 2726-2735. |
[9] | LI Kangkang, ZHANG Jing. Multi-layer encoding and decoding model for image captioning based on attention mechanism [J]. Journal of Computer Applications, 2021, 41(9): 2504-2509. |
[10] | ZHANG Yongbin, CHANG Wenxin, SUN Lianshan, ZHANG Hang. Detection method of domains generated by dictionary-based domain generation algorithm [J]. Journal of Computer Applications, 2021, 41(9): 2609-2614. |
[11] | ZHAO Hong, KONG Dongyi. Chinese description of image content based on fusion of image feature attention and adaptive attention [J]. Journal of Computer Applications, 2021, 41(9): 2496-2503. |
[12] | XU Jianglang, LI Linyan, WAN Xinjun, HU Fuyuan. Indoor scene recognition method combined with object detection [J]. Journal of Computer Applications, 2021, 41(9): 2720-2725. |
[13] | HE Zhenghai, XIAN Yantuan, WANG Meng, YU Zhengtao. Case reading comprehension method combining syntactic guidance and character attention mechanism [J]. Journal of Computer Applications, 2021, 41(8): 2427-2431. |
[14] | QIN Binbin, PENG Liangkang, LU Xiangming, QIAN Jiangbo. Research progress on driver distracted driving detection [J]. Journal of Computer Applications, 2021, 41(8): 2330-2337. |
[15] | HUANG Chengcheng, DONG Xiaoxiao, LI Zhao. Deep pipeline 5×5 convolution method based on two-dimensional Winograd algorithm [J]. Journal of Computer Applications, 2021, 41(8): 2258-2264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||