[1] 熊平, 朱天清, 王晓峰. 差分隐私保护及其应用[J]. 计算机学报,2014,37(1):101-122.(XIONG P,ZHU T Q,WANG X F. A survey on differential privacy and applications[J]. Chinese Journal of Computers,2014,37(1):101-122.) [2] 张啸剑, 陈莉, 金凯忠, 等. 基于联合树的隐私高维数据发布方法[J]. 计算机研究与发展,2018,55(12):2794-2809.(ZHANG X J, CHEN L, JIN K Z, et al. Private high-dimensional data publication with junction tree[J]. Journal of Computer Research and Development,2018,55(12):2794-2809.) [3] DAY W Y,LI N H. Differentially private publishing of highdimensional data using sensitivity control[C]//Proceedings of the 10th ACM Symposium on Information, Computer and Communication Security. New York:ACM,2015:451-462. [4] XU C G,REN J,ZHANG Y X,et al. DPPro:differentially private high-dimensional data release via random projection[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(12):3081-3093. [5] CHAUDHURI K,SARWATE A D,SINHA K. A near-optimal algorithm for differentially-private principal components[J]. Journal of Machine Learning Research,2013,14:2905-2943. [6] ZHANG J,CORMODE G,PROCOPIUC C M,et al. PrivBayes:private data release via Bayesian networks[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York:ACM,2014:1423-1434. [7] CHEN R,XIAO Q,ZHANG Y,et al. Differentially private highdimensional data publication via sample-based inference[C]//Proceedings of the 21st ACM SIGMOD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2015:129-138. [8] 苏炜航, 程祥. 一种基于隐树模型的满足差分隐私的高维数据发布方法[J]. 小型微型计算机系统,2018,39(4):681-685.(SU W H,CHENG X. Latent tree model based differentially private high-dimension data publishing algorithm[J]. Journal of Chinese Computer Systems,2018,39(4):681-685.) [9] QARDAJI W, YANG W N, LI N H. PriView:practical differentially private release of marginal contingency tables[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York:ACM,2014:1435-1446. [10] WANG N, GU Y, XU J, et al. Differentially private highdimensional data publication via grouping and truncating techniques[J]. Frontiers of Computer Science,2019,13(2):382-395. [11] LI H R, XIONG L, JIANG X Q. Differentially private synthetization of multi-dimensional data using copula functions[EB/OL].[2020-06-01]. https://openproceedings.org/EDBT/2014/paper_74.pdf. [12] SU D, CAO J N, LI N H. Differentially private projected histograms of multi-attribute data for classification[EB/OL]. (2015-04-22)[2020-06-01]. https://arxiv.org/pdf/1504.05997.pdf. [13] REN X B,YU C M,YU W R,et al. LoPub:high-dimensional crowdsourcing data publication with local differential privacy[J]. IEEE Transactions on Information Forensics and Security,2018, 13(9):2151-2166. [14] SU S,TANG P,CHENG X,et al. Differentially private multiparty high-dimensional data publishing[C]//Proceedings of the IEEE 32nd International Conference on Data Engineering. Piscataway:IEEE,2016:205-216. [15] 任雪斌, 徐静怡, 杨新宇, 等. 基于Bayes网络的高维感知数据本地隐私保护发布[J]. 中国科学:信息科学,2019,49(12):1586-1605.(REN X B,XU J Y,YANG X Y,et al. Bayesian network-based high-dimensional crowdsourced data publication with local differential privacy[J]. SCIENTIA SINICA Informationis,2019,49(12):1586-1605.) [16] 王良, 王伟平, 孟丹. 基于加权贝叶斯网络的隐私数据发布方法[J]. 计算机研究与发展,2016,53(10):2343-2353.(WANG L,WANG W P,MENG D. Privacy preserving data publishing via weighted Bayesian networks[J]. Journal of Computer Research and Development,2016,53(10):2343-2353.) [17] 郝志峰, 王日宇, 蔡瑞初, 等. 基于贝叶斯网络与语义树的隐私数据发布方法[J]. 计算机工程,2019,45(4):124-129.(HAO Z F,WANG R Z,CAI R C,et al. Privacy data publishing method based on Bayesian network and semantic tree[J]. Computer Engineering,2019,45(4):124-129.) [18] 张啸剑, 孟小峰. 面向数据发布和分析的差分隐私保护[J]. 计算机学报,2014,37(4):927-949.(ZHANG X J,MENG X F. Differential privacy in data publication and analysis[J]. Chinese Journal of Computers,2014,37(4):927-949.) [19] DWORK C. Differential privacy[C]//Proceedings of the 33rd International Colloquium on Automata, Language and Programming,LNCS 4052. Berlin:Springer,2006:1-12. [20] ZHU T Q,LI G,ZHOU W L,et al. Differentially private data publishing and analysis:a survey[J]. IEEE Transactions on Knowledge and Data Engineering,2017,29(8):1619-1638. [21] RESHEF D N,RESHEF Y A,FINUCANE H K,et al. Detecting novel associations in large data sets[J]. Science,2011,334(6062):1518-1524. [22] 戚围, 王浩, 姚宏亮. 动态贝叶斯网络一种自适应的局部抽样粒子滤波方法[J]. 计算机应用研究,2010,27(4):1304-1307. (QI W,WANG H,YAO H L. Adaptive particle filtering for dynamic Bayesian networks inference based on local sample method[J]. Application Research of Computers,2010,27(4):1304-1307.) [23] 叶青青, 孟小峰, 朱敏杰, 等. 本地化差分隐私研究综述[J]. 软件学报,2018,29(7):1981-2005.(YE Q Q,MENG X F,ZHU M J,et al. Survey on local differential privacy[J]. Journal of Software,2018,29(7):1981-2005.) [24] AU W H,CHAN K C C,WONG A K C,et al. Attribute clustering for grouping, selection, and classification of gene expression data[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics,2005,2(2):83-101. [25] DING Y F,ZHAO Y,SHEN X P,et al. Yinyang K-means:a drop-in replacement of the classic K-means with consistent speedup[C]//Proceedings of the 32nd International Conference on Machine Learning. New York:JMLR. org,2015:579-587. [26] XIA S Y,PENG D W,MENG D Y,et al. A fast adaptive k-means with no bounds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2020(Early Access):1-1. [27] ARTHUR D,VASSILVITSKⅡ S. k-means ++:the advantages of careful seeding[C]//Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia,PA:Society for Industrial and Applied Mathematics,2007:1027-1035. [28] XIA S Y,WANG G Y,CHEN Z Z,et al. Complete random forest based class noise filtering learning for improving the generalizability of classifiers[J]. IEEE Transactions on Knowledge and Data Engineering,2019,31(11):2063-2078. [29] XIA S Y,LIU Y S,DING X,et al. Granular ball computing classifiers for efficient, scalable and robust learning[J]. Information Sciences,2019,483:136-152. [30] CHAUDHURI K, MONTELEONI C, SARWATE A D. Differentially private empirical risk minimization[J]. Journal of Machine Learning Research,2011,12:1069-1109. [31] ZHANG J,XIAO X K,YANG Y,et al. PrivGene:differentially private model fitting using genetic algorithms[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York:ACM,2013:665-676. [32] SU D,CAO J N,LI N H,et al. PrivPfC:differentially private data publication for classification[J]. The International Journal on Very Large Data Bases,2018, 27(2):201-223. |