[1] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1440-1448. [2] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(6):1137-1149. [3] LIN T Y,DOLLÁR P,GIRSHICK R,et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:936-944. [4] HE K M,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2980-2988. [5] CAI Z W,VASCONCELOS N. Cascade R-CNN:delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6154-6162. [6] LIN T Y,GOYAL P,GIRSHICK R,et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2999-3007. [7] REDMON J,FARHADI A. YOLOv3:an incremental improvement[EB/OL].[2020-10-11]. https://arxiv.org/pdf/1804.02767.pdf. [8] TIAN Z,SHEN C H,CHEN H,et al. FCOS:fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:9627-9636. [9] HE K M,ZHANG X Y,REN S Q,et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015, 37(9):1904-1916. [10] DAI J F,HE K M,SUN J. Instance-aware semantic segmentation via multi-task network cascades[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:3150-3158. [11] DAI J F,LI Y,HE K M,et al. R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc., 2016:379-387. [12] JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11218. Cham:Springer,2018:816-832. [13] DAI J F,QI H Z,XIONG Y W,et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:764-773. [14] 邓琉元, 杨明, 王春香, 等. 基于环视相机的无人驾驶汽车实例分割方法[J]. 华中科技大学学报(自然科学版),2018,46(12):24-29. (DENG L Y,YANG M,WANG C X,et al. Surround view cameras based instance segmentation method for autonomous vehicles[J]. Journal of Huazhong University of science and Technology (Natural Science Edition),2018,46(12):24-29.) [15] ARNAB A,JAYASUMANA S,ZHENG S,et al. Higher order conditional random fields in deep neural networks[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9906. Cham:Springer,2016:524-540. [16] VEMULAPALLI R, TUZEL O, LIU M Y, et al. Gaussian conditional random field network for semantic segmentation[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:3224-3233. [17] LIN D, JI Y F, LISCHINSKI D, et al. Multi-scale context intertwining for semantic segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11207. Cham:Springer,2018:622-638. [18] LIN G S,MILAN A,SHEN C H,et al. RefineNet:multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5168-5177. [19] TIAN Z,HE T,SHEN C H,et al. Decoders matter for semantic segmentation:data-dependent decoding enables flexible feature aggregation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:3121-3130. [20] BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [21] CHEN L C,PAPANDREOU G,KOKKINOS I,et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [22] CHEN L C,PAPANDREOU G,SCHROFF F,et al. Rethinking atrous convolution for semantic image segmentation[EB/OL].[2020-09-11]. https://arxiv.org/pdf/1706.05587.pdf. [23] CHEN L C,ZHU Y K,PAPANDREOU G,et al. Encoderdecoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham:Springer, 2018:833-851. [24] YANG M K,YU K,ZHANG C,et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:3684-3692. [25] HUANG Z L,WANG X G,HUANG L C,et al. CCNet:crisscross attention for semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:603-612. [26] DING H H,JIANG X D,SHUAI B,et al. Semantic correlation promoted shape-variant context for segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:8877-8886. [27] ZHAO H S,SHI J P,QI X J,et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:6232-6239. [28] SHRIVASTAVA A,GUPTA A,GIRSHICK R. Training regionbased object detectors with online hard example mining[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:761-769. [29] 冯涛, 陈斌, 张跃飞. 基于改进的Mask R-CNN的染色体图像分割框架[J]. 计算机应用,2020,40(11):3332-3339.(FENG T, CHEN B,ZHANG Y F. Chromosome segmentation framework based on improved Mask R-CNN[J]. Journal of Computer Applications,2020,40(11):3332-3339.) [30] 石国强, 赵霞. 基于联合优化的强耦合孪生区域推荐网络的目标跟踪算法[J]. 计算机应用,2020,40(10):2822-2830.(SHI G Q, ZHAO X. Object tracking algorithm based on jointlyoptimized strong-coupled Siamese region proposal network[J]. Journal of Computer Applications,2020,40(10):2822-2830.) [31] PANG J M,CHEN K,SHI J P,et al. Libra R-CNN:towards balanced learning for object detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:821-830. [32] CAO Y H,CHEN K,LOY C C,et al. Prime sample attention in object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2020:11580-11588. [33] ZHANG H K,CHANG H,MA B P,et al. Dynamic R-CNN:towards high quality object detection via dynamic training[EB/OL].[2020-09-06]. https://arxiv.org/pdf/2004.06002.pdf. [34] OpenMMLab. MMDetection[EB/OL].[2020-09-12]. https://github.com/open-mmlab/mmdetection. |