Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (3): 810-817.DOI: 10.11772/j.issn.1001-9081.2021040860
Special Issue: 人工智能; 2021年中国计算机学会人工智能会议(CCFAI 2021)
• 2021 CCF Conference on Artificial Intelligence (CCFAI 2021) • Previous Articles Next Articles
Ne LI1, Guangzhu XU1,2(), Bangjun LEI1,2, Guoliang MA3, Yongtao SHI1,2
Received:
2021-05-25
Revised:
2021-06-23
Accepted:
2021-06-25
Online:
2021-11-09
Published:
2022-03-10
Contact:
Guangzhu XU
About author:
LI Ne, born in 1996, M. S. candidate. Her research interests include digital image processing, target detection.Supported by:
李讷1, 徐光柱1,2(), 雷帮军1,2, 马国亮3, 石勇涛1,2
通讯作者:
徐光柱
作者简介:
李讷(1996—),女,山西长治人,硕士研究生,CCF会员,主要研究方向:数字图像处理、目标检测基金资助:
CLC Number:
Ne LI, Guangzhu XU, Bangjun LEI, Guoliang MA, Yongtao SHI. Logo recognition algorithm for vehicles on traffic road[J]. Journal of Computer Applications, 2022, 42(3): 810-817.
李讷, 徐光柱, 雷帮军, 马国亮, 石勇涛. 交通道路行驶车辆车标识别算法[J]. 《计算机应用》唯一官方网站, 2022, 42(3): 810-817.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040860
数据集类型 | 训练集 | 测试集 |
---|---|---|
车辆正面 | 18 000 | 6 500 |
车辆背面 | 8 000 | 2 500 |
车辆侧面 | 4 000 | 1 000 |
Tab. 1 Distribution of experimental dataset types
数据集类型 | 训练集 | 测试集 |
---|---|---|
车辆正面 | 18 000 | 6 500 |
车辆背面 | 8 000 | 2 500 |
车辆侧面 | 4 000 | 1 000 |
算法 | 准确率/% | 召回率/% | 速度/fps |
---|---|---|---|
YOLOv4 | 97.38 | 97.43 | 50.64 |
K-Means++_YOLOv4 | 98.04 | 98.00 | 50.64 |
ResNet_YOLOv4 | 98.37 | 98.40 | 50.62 |
本文算法 | 99.04 | 98.27 | 50.62 |
Tab. 2 Vehicle logo detection results of original YOLOv4 and improved YOLOv4
算法 | 准确率/% | 召回率/% | 速度/fps |
---|---|---|---|
YOLOv4 | 97.38 | 97.43 | 50.64 |
K-Means++_YOLOv4 | 98.04 | 98.00 | 50.64 |
ResNet_YOLOv4 | 98.37 | 98.40 | 50.62 |
本文算法 | 99.04 | 98.27 | 50.62 |
算法 | 测试集 | 正确数 | 准确率/% | 平均时间/s |
---|---|---|---|---|
文献[ | 200 | 168 | 84.0 | 0.862 0 |
文献[ | 200 | 173 | 86.5 | 1.224 6 |
YOLOv4 | 200 | 197 | 98.5 | 0.005 0 |
本文算法 | 200 | 200 | 100.0 | 0.005 2 |
Tab. 3 Accuracy and time results of different vehicle logo positioning algorithms
算法 | 测试集 | 正确数 | 准确率/% | 平均时间/s |
---|---|---|---|---|
文献[ | 200 | 168 | 84.0 | 0.862 0 |
文献[ | 200 | 173 | 86.5 | 1.224 6 |
YOLOv4 | 200 | 197 | 98.5 | 0.005 0 |
本文算法 | 200 | 200 | 100.0 | 0.005 2 |
序号 | 车标名称 | 测试集样本数 | 模板匹配 | DenseNet201 | ||
---|---|---|---|---|---|---|
正确数 | 准确率/% | 正确数 | 准确率/% | |||
1 | 讴歌 | 116 | 116 | 100.00 | 101 | 87.07 |
2 | 北京汽车 | 102 | 87 | 85.29 | 85 | 83.33 |
3 | 北汽幻速 | 174 | 157 | 90.23 | 158 | 90.80 |
4 | 宝骏 | 159 | 147 | 92.45 | 140 | 88.05 |
5 | 宝马 | 173 | 163 | 94.22 | 153 | 88.44 |
6 | 比亚迪 | 132 | 115 | 87.12 | 104 | 78.79 |
7 | 凯迪拉克 | 100 | 86 | 86.00 | 86 | 86.00 |
8 | 长安之星 | 130 | 118 | 90.77 | 113 | 86.92 |
9 | 奇瑞 | 121 | 103 | 85.12 | 96 | 79.34 |
10 | 沃尔沃 | 172 | 168 | 97.67 | 160 | 93.02 |
11 | 广汽传祺 | 124 | 116 | 93.55 | 113 | 91.13 |
12 | 铃木 | 166 | 161 | 96.99 | 154 | 92.77 |
13 | 江淮 | 231 | 208 | 90.04 | 227 | 98.27 |
14 | 东风 | 131 | 115 | 87.79 | 121 | 92.37 |
15 | 福田 | 122 | 112 | 91.80 | 109 | 89.34 |
16 | 三菱 | 180 | 178 | 98.89 | 169 | 93.89 |
17 | 尼桑 | 194 | 184 | 94.85 | 181 | 93.30 |
Tab. 4 Comparison of vehicle logo recognition results between template matching and deep learning methods
序号 | 车标名称 | 测试集样本数 | 模板匹配 | DenseNet201 | ||
---|---|---|---|---|---|---|
正确数 | 准确率/% | 正确数 | 准确率/% | |||
1 | 讴歌 | 116 | 116 | 100.00 | 101 | 87.07 |
2 | 北京汽车 | 102 | 87 | 85.29 | 85 | 83.33 |
3 | 北汽幻速 | 174 | 157 | 90.23 | 158 | 90.80 |
4 | 宝骏 | 159 | 147 | 92.45 | 140 | 88.05 |
5 | 宝马 | 173 | 163 | 94.22 | 153 | 88.44 |
6 | 比亚迪 | 132 | 115 | 87.12 | 104 | 78.79 |
7 | 凯迪拉克 | 100 | 86 | 86.00 | 86 | 86.00 |
8 | 长安之星 | 130 | 118 | 90.77 | 113 | 86.92 |
9 | 奇瑞 | 121 | 103 | 85.12 | 96 | 79.34 |
10 | 沃尔沃 | 172 | 168 | 97.67 | 160 | 93.02 |
11 | 广汽传祺 | 124 | 116 | 93.55 | 113 | 91.13 |
12 | 铃木 | 166 | 161 | 96.99 | 154 | 92.77 |
13 | 江淮 | 231 | 208 | 90.04 | 227 | 98.27 |
14 | 东风 | 131 | 115 | 87.79 | 121 | 92.37 |
15 | 福田 | 122 | 112 | 91.80 | 109 | 89.34 |
16 | 三菱 | 180 | 178 | 98.89 | 169 | 93.89 |
17 | 尼桑 | 194 | 184 | 94.85 | 181 | 93.30 |
序号 | 车标名称 | 测试集样本数 | 准确率/% | |||
---|---|---|---|---|---|---|
HOG | LBP | DenseNet201 | 本文方法 | |||
平均准确率 | 86.59 | 90.87 | 92.16 | 92.68 | ||
1 | 奥迪 | 150 | 86.67 | 88.67 | 88.00 | 92.00 |
2 | 中国一汽 | 150 | 87.33 | 89.33 | 88.67 | 88.00 |
3 | 雪铁龙 | 200 | 88.00 | 90.00 | 95.00 | 86.00 |
4 | 大众 | 200 | 95.00 | 94.00 | 98.50 | 99.00 |
5 | 现代 | 150 | 75.00 | 93.33 | 94.00 | 93.33 |
6 | 雪佛兰 | 150 | 80.00 | 90.67 | 95.33 | 96.00 |
7 | 长安 | 200 | 85.00 | 92.50 | 90.50 | 93.50 |
8 | 丰田 | 100 | 87.00 | 89.00 | 94.00 | 87.00 |
9 | 本田 | 200 | 91.00 | 89.50 | 86.50 | 93.50 |
10 | 奔驰 | 150 | 90.67 | 92.00 | 85.33 | 89.33 |
11 | 长城 | 150 | 92.00 | 87.33 | 96.00 | 93.33 |
12 | 马自达 | 200 | 74.00 | 89.00 | 97.00 | 94.50 |
13 | 五菱宏光 | 150 | 94.00 | 96.00 | 89.33 | 99.33 |
Tab. 5 Comparison of vehicle logo recognition results by different methods
序号 | 车标名称 | 测试集样本数 | 准确率/% | |||
---|---|---|---|---|---|---|
HOG | LBP | DenseNet201 | 本文方法 | |||
平均准确率 | 86.59 | 90.87 | 92.16 | 92.68 | ||
1 | 奥迪 | 150 | 86.67 | 88.67 | 88.00 | 92.00 |
2 | 中国一汽 | 150 | 87.33 | 89.33 | 88.67 | 88.00 |
3 | 雪铁龙 | 200 | 88.00 | 90.00 | 95.00 | 86.00 |
4 | 大众 | 200 | 95.00 | 94.00 | 98.50 | 99.00 |
5 | 现代 | 150 | 75.00 | 93.33 | 94.00 | 93.33 |
6 | 雪佛兰 | 150 | 80.00 | 90.67 | 95.33 | 96.00 |
7 | 长安 | 200 | 85.00 | 92.50 | 90.50 | 93.50 |
8 | 丰田 | 100 | 87.00 | 89.00 | 94.00 | 87.00 |
9 | 本田 | 200 | 91.00 | 89.50 | 86.50 | 93.50 |
10 | 奔驰 | 150 | 90.67 | 92.00 | 85.33 | 89.33 |
11 | 长城 | 150 | 92.00 | 87.33 | 96.00 | 93.33 |
12 | 马自达 | 200 | 74.00 | 89.00 | 97.00 | 94.50 |
13 | 五菱宏光 | 150 | 94.00 | 96.00 | 89.33 | 99.33 |
1 | 蒋菠. 基于视频图像的汽车车标检测技术研究与实现[D].成都:西南交通大学,2012: 1-2. |
JIANG B. Research and implementation of vehicle logo detection technology based on video images [D]. Chengdu: Southwest Jiaotong University, 2012:1-2. | |
2 | 李哲,于梦茹.基于多种LBP特征集成学习的车标识别[J].计算机工程与应用,2019,55(20):134-138. 10.3778/j.issn.1002-8331.1806-0330 |
LI Z, YU M R. Vehicle logo recognition based on integrated learning of multiple LBP features[J]. Computer Engineering and Applications, 2019, 55(20): 134-138. 10.3778/j.issn.1002-8331.1806-0330 | |
3 | 杨正云,王林.视频监控系统中运动车辆的车标识别技术[J].遵义师范学院学报,2016,18(3):110-114. 10.3969/j.issn.1009-3583.2016.03.027 |
YANG Z Y, WANG L. Vehicle logo recognition technology for moving vehicles in video surveillance system [J]. Journal of Zunyi Normal University, 2016, 18(3): 110-114. 10.3969/j.issn.1009-3583.2016.03.027 | |
4 | 李熙莹,吕硕,袁敏贤,等.基于散热器栅格背景精确分类的车标定位方法[J].计算机工程与应用,2017,53(2):206-213. 10.3778/j.issn.1002-8331.1604-0189 |
LI X Y, LYU S, YUAN M X, et al. Vehicle logo positioning method based on accurate classification of radiator grid background[J]. Computer Engineering and Applications, 2017, 53(2): 206-213. 10.3778/j.issn.1002-8331.1604-0189 | |
5 | 张闯,王景龙.OPENCV在汽车车标识别中的研究与实践[J].福建电脑,2020,36(11):1-4. |
ZHANG C, WANG J L. Research and practice of OPENCV in vehicle logo recognition[J]. Fujian Computer, 2020, 36(11): 1-4. | |
6 | 李哲,于梦茹.基于改进的HOG与LBP特征值的车标识别方法[J].计算机与数字工程,2019,47(12):3154-3159. |
LI Z, YU M R. Vehicle logo recognition method based on improved HOG and LBP features[J]. Computer and Digital Engineering, 2019, 47(12): 3154-3159. | |
7 | 耿庆田,于繁华,王宇婷,等.基于SIFT的车标识别算法[J].吉林大学学报(理学版),2018,56(3):639-644. 10.3788/OPE.20182605.1267 |
GENG Q T, YU F H, WANG Y T, et al. Vehicle logo recognition algorithm based on SIFT[J]. Journal of Jilin University (Science Edition), 2018, 56(3): 639-644. 10.3788/OPE.20182605.1267 | |
8 | 张硕.基于Adaboost的车标识别方法研究[J].中国安防,2014(5):85-89. 10.3969/j.issn.1673-7873.2014.03.017 |
ZHANG S. Research on vehicle logo recognition method based on Adaboost[J]. China Security, 2014(5):85-89. 10.3969/j.issn.1673-7873.2014.03.017 | |
9 | HUANG Y, WU R, SUN Y, et al. Vehicle logo recognition system based on convolutional neural networks with a pretraining strategy [J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(4):1951-1960. 10.1109/tits.2014.2387069 |
10 | 叶玉双,杨洁.基于MFC+opencv的车标识别系统[J].计算机时代,2020(12):6-9. |
YE Y S, YANG J. Vehicle logo recognition system based on MFC+OpenCV[J]. Computer Era, 2020(12): 6-9. | |
11 | GIRSHICK R, DONAHUE J, DARRELL T. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 10.1109/cvpr.2014.81 |
12 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015:1440-1448. 10.1109/iccv.2015.169 |
13 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. 10.1109/tpami.2016.2577031 |
14 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
15 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7263-7271. 10.1109/cvpr.2017.690 |
16 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2018:1-6. 10.1109/cvpr.2018.00430 |
17 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition, 2020,17(9):198-215. |
18 | WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 390-391. 10.1109/cvprw50498.2020.00203 |
19 | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. 10.1109/tpami.2015.2389824 |
20 | WANG K, LIEW J H, ZOU Y, et al. PANet: few-shot image semantic segmentation with prototype alignment [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9197-9206. 10.1109/iccv.2019.00929 |
21 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2117-2125. 10.1109/cvpr.2017.106 |
22 | MISRA D. Mish: A self regularized non-monotonic neural activation function[EB/OL]. [2021-06-04]. . |
23 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
24 | HUANG G, LIU Z, MAATEN L VAN DER, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4700-4708. 10.1109/cvpr.2017.243 |
25 | VASSILVITSKII S, ARTHUR D. K-means++: the advantages of careful seeding[C]// Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. Piscataway: IEEE, 2006: 1027-1035. |
26 | JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965-976. 10.1109/83.597272 |
27 | 徐建东.基于最小二乘法拟合的Otsu快速图像分割方法[J].常州大学学报(自然科学版),2021,33(1):70-76. |
XU J D. Otsu fast image segmentation method based on least square fitting[J]. Journal of Changzhou University (Natural Science Edition), 2021, 33(1): 70-76. | |
28 | 时春霖,杨培章,张超,等.基于Kittler最小误差分割算法的小视场星图分割[J].西南交通大学学报, 2021,56(1):168-175. |
SHI C L, YANG P Z, ZHANG C, et al. Small field of view star image segmentation based on Kittler minimum error segmentation algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(1):168-175. | |
29 | 田梦娜,徐泮林,丁鹏文.基于Matlab的边缘检测算法研究[J].测绘与空间地理信息,2020,43(2):197-199. 10.3969/j.issn.1672-5867.2020.02.056 |
TIAN M N, XU P L, DING P W. Research on edge detection algorithm based on Matlab[J]. Surveying and Spatial Geographic Information, 2020, 43(2):197-199. 10.3969/j.issn.1672-5867.2020.02.056 | |
30 | 李迪,徐光柱,王亚文,等.反馈式ICM神经网络和FPF相结合的剪影识别[J].广西大学学报(自然科学版),2018,43(3):1089-1096. |
LI D, XU G Z, WANG Y W, et al. Silhouette recognition combined with feedback ICM neural network and FPF[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(3):1089-1096. | |
31 | HUANG Y, WU R, SUN Y, et al. Vehicle logo recognition system based on convolutional neural networks with a pretraining strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):1951-1960. 10.1109/tits.2014.2387069 |
32 | YE Y, WANG J, LU J, et al. Vehicle logo recognition based on overlapping enhanced patterns of oriented edge magnitudes[J]. Computers & Electrical Engineering, 2018, 71:273-283. 10.1016/j.compeleceng.2018.07.045 |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[3] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[4] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[5] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[6] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[7] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[8] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[9] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[10] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[11] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[13] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[14] | Wudan LONG, Bo PENG, Jie HU, Ying SHEN, Danni DING. Road damage detection algorithm based on enhanced feature extraction [J]. Journal of Computer Applications, 2024, 44(7): 2264-2270. |
[15] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||