Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (7): 2004-2010.DOI: 10.11772/j.issn.1001-9081.2023081178
• Artificial intelligence • Previous Articles Next Articles
Qing LIU1,2,3, Yanping CHEN1,2,3(), Anqi ZOU1,2,3, Ruizhang HUANG1,2,3, Yongbin QIN1,2,3
Received:
2023-09-01
Revised:
2023-09-20
Accepted:
2023-10-09
Online:
2024-07-18
Published:
2024-07-10
Contact:
Yanping CHEN
About author:
LIU Qing, born in 1996, M. S. candidate. Her research interests include natural language processing, machine reading comprehension.Supported by:
刘青1,2,3, 陈艳平1,2,3(), 邹安琪1,2,3, 黄瑞章1,2,3, 秦永彬1,2,3
通讯作者:
陈艳平
作者简介:
刘青(1996—),女,湖南衡阳人,硕士研究生,主要研究方向:自然语言处理、机器阅读理解;基金资助:
CLC Number:
Qing LIU, Yanping CHEN, Anqi ZOU, Ruizhang HUANG, Yongbin QIN. Boundary-aware approach to machine reading comprehension[J]. Journal of Computer Applications, 2024, 44(7): 2004-2010.
刘青, 陈艳平, 邹安琪, 黄瑞章, 秦永彬. 面向机器阅读理解的边界感知方法[J]. 《计算机应用》唯一官方网站, 2024, 44(7): 2004-2010.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081178
参数 | 设定值 |
---|---|
学习率 | 2×10-5 |
最大输入 | 512 |
长文本跨步 | 128 |
最大问题长度 | 64 |
最大答案长度 | 30 |
Batch size | 16(SQuAD1.1), 8(HotpotQA与NewsQA) |
Epoch | 4 |
Tab. 1 Parameter setting
参数 | 设定值 |
---|---|
学习率 | 2×10-5 |
最大输入 | 512 |
长文本跨步 | 128 |
最大问题长度 | 64 |
最大答案长度 | 30 |
Batch size | 16(SQuAD1.1), 8(HotpotQA与NewsQA) |
Epoch | 4 |
数据集 | 方法 | F1值 | EM值 |
---|---|---|---|
SQuAD1.1 | Match-LSTM[ | 73.7 | 64.7 |
ELMo+Gated Self-BiDAF[ | 83.1 | 74.5 | |
Human Perf.[ | 90.5 | 80.3 | |
BERTBASE[ | 88.5 | 80.8 | |
LinkBERTBASE*[ | 90.8 | 84.1 | |
RoBERTaBASE[ | 91.5 | 84.6 | |
SpanBERTBASE* | 92.1 | 85.4 | |
本文方法 | 92.3 | 86.3 | |
HotpotQA | BERTBASE | 76.0 | — |
SpanBERTBASE* | 79.3 | 63.4 | |
本文方法 | 80.0 | 64.1 | |
NewsQA | Match-LSTM | 49.6 | 34.4 |
BERTBASE | 65.7 | — | |
SpanBERTBASE* | 68.5 | 53.5 | |
本文方法 | 71.3 | 56.8 |
Tab. 2 Results on SQuAD1.1, HotpotQA and NewsQA datasets
数据集 | 方法 | F1值 | EM值 |
---|---|---|---|
SQuAD1.1 | Match-LSTM[ | 73.7 | 64.7 |
ELMo+Gated Self-BiDAF[ | 83.1 | 74.5 | |
Human Perf.[ | 90.5 | 80.3 | |
BERTBASE[ | 88.5 | 80.8 | |
LinkBERTBASE*[ | 90.8 | 84.1 | |
RoBERTaBASE[ | 91.5 | 84.6 | |
SpanBERTBASE* | 92.1 | 85.4 | |
本文方法 | 92.3 | 86.3 | |
HotpotQA | BERTBASE | 76.0 | — |
SpanBERTBASE* | 79.3 | 63.4 | |
本文方法 | 80.0 | 64.1 | |
NewsQA | Match-LSTM | 49.6 | 34.4 |
BERTBASE | 65.7 | — | |
SpanBERTBASE* | 68.5 | 53.5 | |
本文方法 | 71.3 | 56.8 |
方法 | F1值 | EM值 |
---|---|---|
SpanBERTBASE* | 92.1 | 85.4 |
单边校准 | 92.3 | 86.3 |
双边校准 | 92.2 | 85.6 |
Tab. 3 Experimental results of unilateral and bilateral calibration on SQuAD1.1 dataset
方法 | F1值 | EM值 |
---|---|---|
SpanBERTBASE* | 92.1 | 85.4 |
单边校准 | 92.3 | 86.3 |
双边校准 | 92.2 | 85.6 |
方法 | EM |
---|---|
SpanBERTBASE* | 85.36 |
SpanBERTBASE*+ (a) | 85.51 |
SpanBERTBASE*+ (b) | 85.73 |
SpanBERTBASE*+ (b) - Bi-LSTM | 85.66 |
SpanBERTBASE*+ (a) + (b) | 86.30 |
Tab. 4 Results of ablation experiments
方法 | EM |
---|---|
SpanBERTBASE* | 85.36 |
SpanBERTBASE*+ (a) | 85.51 |
SpanBERTBASE*+ (b) | 85.73 |
SpanBERTBASE*+ (b) - Bi-LSTM | 85.66 |
SpanBERTBASE*+ (a) + (b) | 86.30 |
1 | YOU C, CHEN N, ZOU Y. Knowledge distillation for improved accuracy in spoken question answering [C]// Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 7793-7797. |
2 | 奚雪峰,周国栋.面向自然语言处理的深度学习研究[J].自动化学报, 2016, 42(10): 1445-1465. |
XI X F, ZHOU G D. A survey on deep learning for natural language processing [J]. Acta Automatica Sinica, 2016, 42(10): 1445-1465. | |
3 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
4 | JOSHI M, CHEN D, LIU Y, et al. SpanBERT: improving pre-training by representing and predicting spans [J]. Transactions of the Association for Computational Linguistics, 2020, 8: 64-77. |
5 | RAJPURKAR P, ZHANG J, LOPYREV K, et al. SQuAD: 100000+ questions for machine comprehension of text [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2016: 2383-2392. |
6 | YANG Z, QI P, ZHANG S, et al. HotpotQA: a dataset for diverse, explainable multi-hop question answering [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2369-2380. |
7 | TRISCHLER A, WANG T, YUAN X, et al. NewsQA: a machine comprehension dataset [C]// Proceedings of the 2 nd Workshop on Representation Learning for NLP. Stroudsburg: ACL, 2017: 191-200. |
8 | FISCH A, TALMOR A, JIA R, et al. MRQA 2019 shared task: evaluating generalization in reading comprehension [C]// Proceedings of the 2 nd Workshop on Machine Reading for Question Answering. Stroudsburg: ACL, 2019: 1-13. |
9 | LIU S, ZHANG X, ZHANG S, et al. Neural machine reading comprehension: methods and trends [J]. Applied Sciences, 2019, 9(18): 3698. |
10 | WANG S, JIANG J. Machine comprehension using match-LSTM and answer pointer [EB/OL]. (2016-11-07) [2023-09-06]. . |
11 | 张虎,王宇杰,谭红叶,等.基于MHSA和句法关系增强的机器阅读理解方法研究[J].自动化学报, 2022, 48(11): 2718-2728. |
ZHANG H, WANG Y J, TAN H Y, et al. Research on machine reading comprehension method based on MHSA and syntactic relations enhancement [J]. Acta Automatica Sinica, 2022, 48(11): 2718-2728. | |
12 | HU M, WEI F, PENG Y, et al. Read + verify: machine reading comprehension with unanswerable questions [C]// Proceedings of the 33 rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 6529-6537. |
13 | 赵加坤,戴梦瑶,刘江宁,等.面向片段抽取式机器阅读理解的注意力网络[J].计算机与数字工程, 2022, 50(2): 350-355. |
ZHAO J K, DAI M Y, LIU J N, et al. Attention networks for fragment extractive machine reading comprehension [J]. Computer and Digital Engineering, 2022, 50(2): 350-355. | |
14 | LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach [EB/OL]. (2019-07-26) [2023-09-06]. . |
15 | RAM O, KIRSTAIN Y, BERANT J, et al. Few-shot question answering by pretraining span selection [C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing s (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 3066-3079. |
16 | YASUNAGA M, LESKOVEC J, LIANG P. LinkBERT: pre-training language models with document links [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2022: 8003-8016. |
17 | DHINGRA B, LIU H, YANG Z, et al. Gated-attention readers for text comprehension [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1832-1846. |
18 | ZHANG Z, YANG J, ZHAO H. Retrospective reader for machine reading comprehension [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 14506-14514. |
19 | ZHANG W, REN F. ELMo+gated self-attention network based on BiDAF for machine reading comprehension [C]// Proceedings of the IEEE 11th International Conference on Software Engineering and Service Science. Piscataway: IEEE, 2020: 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||