1 |
程思静,华伟. 心电学指标在预测心脏性猝死中的研究进展[J]. 中国心血管杂志, 2021, 26(6):505-508. 10.3969/j.issn.1007-5410.2021.06.001
|
|
CHENG S J, HUA W. Electrocardiographic indicators for the prediction of sudden cardiac death: a literature review[J]. Chinese Journal of Cardiovascular Medicine, 2021, 26(6):505-508. 10.3969/j.issn.1007-5410.2021.06.001
|
2 |
赵梦蝶,孙九爱. 机器学习在心血管疾病诊断中的研究进展[J]. 北京生物医学工程, 2020, 39(2):208-214. 10.3969/j.issn.1002-3208.2020.02.015
|
|
ZHAO M D, SUN J A. Review on machine learning approaches for cardiovascular disease diagnosis[J]. Beijing Biomedical Engineering, 2020, 39(2):208-214. 10.3969/j.issn.1002-3208.2020.02.015
|
3 |
HU W L, CHEN X H, WANG Y, et al. Arrhythmia recognition and classification using ECG morphology and segment feature analysis[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(1):131-138. 10.1109/tcbb.2018.2846611
|
4 |
王官军,吴婷,汪龙. 基于机器学习的心电图诊断研究[J]. 实用心电学杂志, 2020, 29(4):262-268, 297. 10.13308/j.issn.2095-9354.2020.04.007
|
|
WANG G J, WU T, WANG L. Research of ECG diagnosis based on machine learning[J]. Journal of Practical Electrocardiology, 2020, 29(4):262-268, 297. 10.13308/j.issn.2095-9354.2020.04.007
|
5 |
ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837. 10.1109/tkde.2013.39
|
6 |
李思男,李宁,李战怀. 多标签数据挖掘技术:研究综述[J]. 计算机科学, 2013, 40(4):14-21. 10.3969/j.issn.1002-137X.2013.04.003
|
|
LI S N, LI N, LI Z H. Multi-label data mining: a survey[J]. Computer Science, 2013, 40(4):14-21. 10.3969/j.issn.1002-137X.2013.04.003
|
7 |
CLARE A, KING R D. Knowledge discovery in multi-label phenotype data[C]// Proceedings of the 2001 European Conference on Principles of Data Mining and Knowledge Discovery, LNAI 2168. Berlin: Springer, 2001:42-53.
|
8 |
TSOUMAKAS G, VLAHAVAS I. Random k-labelsets: an ensemble method for multilabel classification[C]// Proceedings of the 2007 European Conference on Machine Learning, LNAI 4701. Berlin: Springer, 2007: 406-417. 10.1007/978-3-540-74958-5_38
|
9 |
DEMBCZYNSKI K, CHENG W W, HÜLLERMEIER E. Bayes optimal multilabel classification via probabilistic classifier chains[C]// Proceedings of the 27th International Conference on Machine Learning. Madison, WI: Omnipress, 2010: 279-286.
|
10 |
ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. 10.1016/j.patcog.2006.12.019
|
11 |
金永贤,张微微,周恩波. 一种改进的RAKEL多标签分类算法[J]. 浙江师范大学学报(自然科学版), 2016, 39(4): 386-391. 10.16218/j.issn.1001-5051.2016.04.005
|
|
JIN Y X, ZHANG W W, ZHOU E B. An improved RAKEL method for multilabel classification[J]. Journal of Zhejiang Normal University (Natural Sciences), 2016, 39(4): 386-391. 10.16218/j.issn.1001-5051.2016.04.005
|
12 |
周恩波,叶荣华,张微微,等. 一种基于成对标签的Rakel算法改进[J]. 计算机与现代化, 2016(3):16-18, 23. 10.3969/j.issn.1006-2475.2016.03.004
|
|
ZHOU E B, YE R H, ZHANG W W, et al. An improved Rakel approach based on label pairwise[J]. Computer and Modernization, 2016(3): 16-18, 23. 10.3969/j.issn.1006-2475.2016.03.004
|
13 |
梁睿博,王思远,李壮,等. 基于RAKEL算法的商品评论多标签分类研究与实现[J]. 软件工程, 2019, 22(1):8-11.
|
|
LIANG R B, WANG S Y, LI Z, et al. Research and implementation of RAKEL algorithm based multi-label classification for online commodity reviews[J]. Software Engineering, 2019, 22(1):8-11.
|
14 |
SUCAR L E, BIELZA C, MORALES E F. Multi-label classification with Bayesian network-based chain classifiers[J]. Pattern Recognition Letters, 2014, 41: 14-22. 10.1016/j.patrec.2013.11.007
|
15 |
张连文,郭海鹏. 贝叶斯网引论[M]. 北京:科学出版社, 2006: 97.
|
|
ZHANG L W, GUO H P. Introduction to Bayesian Networks[M]. Beijing: Science Press, 2006: 97.
|
16 |
张振海,李士宁,李志刚,等. 一类基于信息熵的多标签特征选择算法[J]. 计算机研究与发展, 2013, 50(6): 1177-1184. 10.7544/issn1000-1239.2013.20121277
|
|
ZHANG Z H, LI S N, LI Z G, et al. Multi-label feature selection algorithm based on information entropy[J]. Journal of Computer Research and Development, 2013, 50(6): 1177-1184. 10.7544/issn1000-1239.2013.20121277
|
17 |
张鑫,李占山. 自然进化策略的特征选择算法研究[J]. 软件学报, 2020, 31(12):3733-3752.
|
|
ZHANG X, LI Z S. Research on feature selection algorithm based on natural evolution strategy[J]. Journal of Software, 2020, 31(12):3733-3752.
|
18 |
HANCER E. Differential evolution for feature selection: a fuzzy wrapper-filter approach[J]. Soft Computing, 2019, 23(13):5233-5248. 10.1007/s00500-018-3545-7
|