Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 592-598.DOI: 10.11772/j.issn.1001-9081.2021061109
• Multimedia computing and computer simulation • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Wei LI1,2, Yaochi FAN1( ), Qiaoyong JIANG1, Lei WANG2, Qingzheng XU3
), Qiaoyong JIANG1, Lei WANG2, Qingzheng XU3
												  
						
						
						
					
				
Received:2021-06-28
															
							
																	Revised:2021-07-14
															
							
																	Accepted:2021-07-15
															
							
							
																	Online:2022-02-11
															
							
																	Published:2022-02-10
															
							
						Contact:
								Yaochi FAN   
													About author:LI Wei, born in 1973, Ph. D., associate professor. Her research interests include evolutionary optimization, data mining.
        
                   
            李薇1,2, 樊瑶驰1( ), 江巧永1, 王磊2, 徐庆征3
), 江巧永1, 王磊2, 徐庆征3
                  
        
        
        
        
    
通讯作者:
					樊瑶驰
							作者简介:李薇(1973—),女,黑龙江哈尔滨人,副教授,博士,CCF会员,主要研究方向:演化优化、数据挖掘;CLC Number:
Wei LI, Yaochi FAN, Qiaoyong JIANG, Lei WANG, Qingzheng XU. Variable convolutional autoencoder method based on teaching-learning-based optimization for medical image classification[J]. Journal of Computer Applications, 2022, 42(2): 592-598.
李薇, 樊瑶驰, 江巧永, 王磊, 徐庆征. 基于教与学优化的可变卷积自编码器的医学图像分类方法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 592-598.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061109
| 类别 | 编码信息 | 
|---|---|
| Convolution layer | the filter size, the number of feature maps, the stride size, the convolutional type, the mean value of filter elements, and the coefficient of L2 | 
| Pooling layer | the kernel size, the stride size, the pooling type | 
Tab. 1 Encoded information in convolutional layer and pooling layer of TVCAE
| 类别 | 编码信息 | 
|---|---|
| Convolution layer | the filter size, the number of feature maps, the stride size, the convolutional type, the mean value of filter elements, and the coefficient of L2 | 
| Pooling layer | the kernel size, the stride size, the pooling type | 
| 算法 | 分类精度 | 
|---|---|
| CAE | 0.843 8 | 
| FCAE | 0.843 8 | 
| TVCAE | 0.8516 | 
Tab. 2 Comparison of classification accuracy of TVCAE, CAE and FCAE for BreastMNIST
| 算法 | 分类精度 | 
|---|---|
| CAE | 0.843 8 | 
| FCAE | 0.843 8 | 
| TVCAE | 0.8516 | 
| 算法 | 分类精度 | 
|---|---|
| Alexnet | 0.867 2 | 
| VGGnet-11 | 0.890 6 | 
| CAE-2 | 0.867 2 | 
| FCAE-2 | 0.875 0 | 
| FCAE-3 | 0.882 8 | 
| TVCAE-2 | 0.882 8 | 
| TVCAE-3 | 0.8984 | 
Tab. 3 Comparison of classification accuracy of TVCAE with Alexnet, VGGnet-11, CAE and FCAE for BreastMNIST
| 算法 | 分类精度 | 
|---|---|
| Alexnet | 0.867 2 | 
| VGGnet-11 | 0.890 6 | 
| CAE-2 | 0.867 2 | 
| FCAE-2 | 0.875 0 | 
| FCAE-3 | 0.882 8 | 
| TVCAE-2 | 0.882 8 | 
| TVCAE-3 | 0.8984 | 
| 1 | HINTON G E, ZEMEL R S. Autoencoders, minimum description length and Helmholtz free energy [C]// Proceedings of the 6th International Conference on Neural Information Processing Systems. San Francisco: Morgan Kaufmann Publishers Inc., 1993: 3-10. | 
| 2 | BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological Cybernetics, 1988, 59(4/5): 291-294. 10.1007/bf00332918 | 
| 3 | DU B, XIONG W, WU J, et al. Stacked convolutional denoising auto-encoders for feature representation[J]. IEEE Transactions on Cybernetics, 2017, 47(4): 1017-1027. 10.1109/tcyb.2016.2536638 | 
| 4 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. 10.1109/5.726791 | 
| 5 | PLUIM J P W, MAINTZ J B A, VIERGEVER M A. Mutual-information-based registration of medical images: a survey[J]. IEEE Transactions on Medical Imaging, 2003, 22(8): 986-1004. 10.1109/tmi.2003.815867 | 
| 6 | PENG X, ZHAO B, YAN R, et al. Bag of events: an efficient probability-based feature extraction method for AER image sensors[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(4): 791-803. 10.1109/tnnls.2016.2536741 | 
| 7 | MASCI J, MEIER U, CIREŞAN D, et al. Stacked convolutional auto-encoders for hierarchical feature extraction [C]// Proceedings of the 2011 International Conference on Artificial Neural Networks, LNCS6791. Berlin: Springer, 2011: 52-59. | 
| 8 | LAWRENCE S, GILES C L, TSOI A C, et al. Face recognition: a convolutional neural-network approach[J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113. 10.1109/72.554195 | 
| 9 | NEBAUER C. Evaluation of convolutional neural networks for visual recognition[J]. IEEE Transactions on Neural Networks, 1998, 9(4): 685-696. 10.1109/72.701181 | 
| 10 | KAVUKCUOGLU K, SERMANET P, BOUREAU Y L, et al. Learning convolutional feature hierarchies for visual recognition [C]// Proceedings of the 23rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2010: 1090-1098. | 
| 11 | LI F F, QIAO H, ZHANG B. Discriminatively boosted image clustering with fully convolutional auto-encoders[J]. Pattern Recognition, 2018, 83: 161-173. 10.1016/j.patcog.2018.05.019 | 
| 12 | LIN X C, TANG Y, TIANFIELD H, et al. A novel approach to reconstruction based saliency detection via convolutional neural network stacked with auto-encoder[J]. Neurocomputing, 2019, 349: 145-155. 10.1016/j.neucom.2019.01.041 | 
| 13 | YU J B. Evolutionary manifold regularized stacked denoising autoencoders for gearbox fault diagnosis[J]. Knowledge-Based Systems, 2019, 178: 111-122. 10.1016/j.knosys.2019.04.022 | 
| 14 | SUN Y N, XUE B, ZHANG M J, et al. A particle swarm optimization-based flexible convolutional autoencoder for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(8): 2295-2309. 10.1109/tnnls.2018.2881143 | 
| 15 | GAO Z K, LI Y L, YANG Y X, et al. A GPSO-optimized convolutional neural networks for EEG-based emotion recognition[J]. Neurocomputing, 2020, 380: 225-235. 10.1016/j.neucom.2019.10.096 | 
| 16 | 满芮,杨萍,季程雨,等.乳腺癌组织病理学图像分类方法研究综述[J].计算机科学, 2020, 47(11A): 145-150. 10.11896/jsjkx.191100098 | 
| MAN R, YANG P, JI C Y, et al. Survey of classification methods of breast cancer histopathological images[J]. Computer Science, 2020, 47(11A): 145-150. 10.11896/jsjkx.191100098 | |
| 17 | 宋杰,肖亮,练智超,等.基于深度学习的数字病理图像分割综述与展望[J].软件学报, 2021, 32(5): 1427-1460. 10.13328/j.cnki.jos.006205 | 
| SONG J, XIAO L, LIAN Z C, et al. Overview and prospect of deep learning for image segmentation in digital pathology[J]. Journal of Software, 2021, 32(5): 1427-1460. 10.13328/j.cnki.jos.006205 | |
| 18 | MOON W K, LEE Y W, KE H H, et al. Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks[J]. Computer Methods and Programs in Biomedicine, 2020, 190: No.105361. 10.1016/j.cmpb.2020.105361 | 
| 19 | RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 2011, 43(3): 303-315. 10.1016/j.cad.2010.12.015 | 
| 20 | FERNANDES JUNIOR F E, YEN G G. Particle swarm optimization of deep neural networks architectures for image classification[J]. Swarm and Evolutionary Computation, 2019, 49: 62-74. 10.1016/j.swevo.2019.05.010 | 
| 21 | WANG B, SUN Y N, XUE B, et al. Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification [C]// Proceedings of the 2018 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2018: 1-8. 10.1109/cec.2018.8477735 | 
| 22 | SU J W, VARGAS D V, SAKURAI K. One pixel attack for fooling deep neural networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 828-841. 10.1109/tevc.2019.2890858 | 
| 23 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. | 
| 24 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-04-20]. . 10.5244/c.28.6 | 
| 25 | YANG J C, SHI R, NI B B. MedMNIST classification decathlon: a lightweight AutoML benchmark for medical image analysis [C]// Proceedings of the IEEE 18th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2021: 191-195. 10.1109/isbi48211.2021.9434062 | 
| 26 | AL-DHABYANI W, GOMAA M, KHALED H, et al. Dataset of breast ultrasound images[J]. Data in Brief, 2020, 28: No.104863. 10.1016/j.dib.2019.104863 | 
| 27 | HUANG G, LIU Z, MAATEN L VAN DER, et al. Densely connected convolutional networks [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 | 
| [1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. | 
| [2] | Shanglong LI, Jianhua LIU, Heming JIA. Reptile search algorithm based on multi-hunting coordination strategy [J]. Journal of Computer Applications, 2024, 44(9): 2818-2828. | 
| [3] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. | 
| [4] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. | 
| [5] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. | 
| [6] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. | 
| [7] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. | 
| [8] | Yan ZHOU, Yang LI. Rectified cross pseudo supervision method with attention mechanism for stroke lesion segmentation [J]. Journal of Computer Applications, 2024, 44(6): 1942-1948. | 
| [9] | Ye TIAN, Jinjin CHEN, Xingyi ZHANG. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization [J]. Journal of Computer Applications, 2024, 44(5): 1386-1392. | 
| [10] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. | 
| [11] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. | 
| [12] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. | 
| [13] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. | 
| [14] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. | 
| [15] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||