Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (9): 2952-2959.DOI: 10.11772/j.issn.1001-9081.2021091650
• Frontier and comprehensive applications • Previous Articles Next Articles
Hongchao YAN1, Wei TANG1(), Bin YAO2
Received:
2021-09-22
Revised:
2022-01-05
Accepted:
2022-01-13
Online:
2022-09-19
Published:
2022-09-10
Contact:
Wei TANG
About author:
YAN Hongchao, born in 1980, M. D., engineer. His research interests include intelligent optimization, production scheduling.Supported by:
通讯作者:
汤伟
作者简介:
闫红超(1980—),男,河南新乡人,工程师,硕士,主要研究方向:智能优化、生产调度;基金资助:
CLC Number:
Hongchao YAN, Wei TANG, Bin YAO. Hybrid bird swarm algorithm for solving permutation flowshop scheduling problem[J]. Journal of Computer Applications, 2022, 42(9): 2952-2959.
闫红超, 汤伟, 姚斌. 求解置换流水车间调度问题的混合鸟群算法[J]. 《计算机应用》唯一官方网站, 2022, 42(9): 2952-2959.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021091650
算例 | 算例 | ||||||
---|---|---|---|---|---|---|---|
Rec01 | 5 | 20 | 1 247 | Rec23 | 10 | 30 | 2 011 |
Rec03 | 5 | 20 | 1 109 | Rec25 | 15 | 30 | 2 513 |
Rec05 | 5 | 20 | 1 242 | Rec27 | 15 | 30 | 2 373 |
Rec07 | 10 | 20 | 1 566 | Rec29 | 15 | 30 | 2 287 |
Rec09 | 10 | 20 | 1 537 | Rec31 | 10 | 50 | 3 045 |
Rec11 | 10 | 20 | 1 431 | Rec33 | 10 | 50 | 3 114 |
Rec13 | 15 | 20 | 1 930 | Rec35 | 10 | 50 | 3 277 |
Rec15 | 15 | 20 | 1 950 | Rec37 | 20 | 75 | 4 951 |
Rec17 | 15 | 20 | 1 902 | Rec39 | 20 | 75 | 5 087 |
Rec19 | 10 | 30 | 2 093 | Rec41 | 20 | 75 | 4 960 |
Rec21 | 10 | 30 | 2 017 |
Tab.1 The optimal results of Rec benchmark
算例 | 算例 | ||||||
---|---|---|---|---|---|---|---|
Rec01 | 5 | 20 | 1 247 | Rec23 | 10 | 30 | 2 011 |
Rec03 | 5 | 20 | 1 109 | Rec25 | 15 | 30 | 2 513 |
Rec05 | 5 | 20 | 1 242 | Rec27 | 15 | 30 | 2 373 |
Rec07 | 10 | 20 | 1 566 | Rec29 | 15 | 30 | 2 287 |
Rec09 | 10 | 20 | 1 537 | Rec31 | 10 | 50 | 3 045 |
Rec11 | 10 | 20 | 1 431 | Rec33 | 10 | 50 | 3 114 |
Rec13 | 15 | 20 | 1 930 | Rec35 | 10 | 50 | 3 277 |
Rec15 | 15 | 20 | 1 950 | Rec37 | 20 | 75 | 4 951 |
Rec17 | 15 | 20 | 1 902 | Rec39 | 20 | 75 | 5 087 |
Rec19 | 10 | 30 | 2 093 | Rec41 | 20 | 75 | 4 960 |
Rec21 | 10 | 30 | 2 017 |
算例 | BSA | HBSA1 | HBSA2 | HBSA3 | HBSA | |||||
---|---|---|---|---|---|---|---|---|---|---|
BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | |
平均值 | 7.635 | 10.933 | 3.749 | 4.036 | 0.213 | 0.271 | 1.546 | 2.246 | 0.098 | 0.173 |
Rec01 | 4.411 | 8.528 | 2.005 | 3.769 | 0.000 | 0.000 | 0.321 | 1.235 | 0.000 | 0.000 |
Rec03 | 2.435 | 6.353 | 1.713 | 1.713 | 0.000 | 0.000 | 0.180 | 0.180 | 0.000 | 0.000 |
Rec05 | 3.140 | 4.630 | 0.242 | 0.322 | 0.000 | 0.000 | 0.242 | 0.242 | 0.000 | 0.000 |
Rec07 | 2.299 | 6.660 | 1.149 | 3.078 | 0.000 | 0.000 | 0.000 | 1.034 | 0.000 | 0.000 |
Rec09 | 4.099 | 9.073 | 1.431 | 1.614 | 0.000 | 0.000 | 1.301 | 1.405 | 0.000 | 0.000 |
Rec11 | 6.429 | 10.887 | 6.429 | 6.429 | 0.000 | 0.000 | 0.629 | 2.068 | 0.000 | 0.000 |
Rec13 | 4.560 | 9.440 | 1.969 | 2.052 | 0.000 | 0.000 | 1.969 | 1.969 | 0.000 | 0.000 |
Rec15 | 4.410 | 6.905 | 5.385 | 5.385 | 0.000 | 0.000 | 1.179 | 1.600 | 0.000 | 0.000 |
Rec17 | 5.941 | 10.862 | 4.101 | 4.101 | 0.000 | 0.000 | 2.208 | 3.344 | 0.000 | 0.000 |
Rec19 | 9.412 | 11.804 | 3.679 | 3.794 | 0.287 | 0.287 | 0.812 | 1.223 | 0.143 | 0.268 |
Rec21 | 7.685 | 10.902 | 4.512 | 4.730 | 0.188 | 0.149 | 1.438 | 1.616 | 0.149 | 0.149 |
Rec23 | 7.161 | 11.599 | 7.608 | 7.668 | 0.298 | 0.378 | 1.840 | 3.590 | 0.149 | 0.219 |
Rec25 | 7.879 | 11.834 | 4.497 | 4.759 | 0.119 | 0.263 | 3.024 | 3.438 | 0.000 | 0.103 |
Rec27 | 9.608 | 13.184 | 3.793 | 4.197 | 0.169 | 0.236 | 2.191 | 2.790 | 0.000 | 0.181 |
Rec29 | 12.505 | 15.826 | 4.416 | 4.486 | 0.000 | 0.061 | 1.355 | 3.244 | 0.000 | 0.026 |
Rec31 | 11.856 | 13.348 | 5.123 | 5.511 | 0.263 | 0.361 | 1.872 | 3.369 | 0.099 | 0.246 |
Rec33 | 8.028 | 10.780 | 1.574 | 1.805 | 0.000 | 0.000 | 0.514 | 0.732 | 0.000 | 0.000 |
Rec35 | 6.012 | 7.795 | 0.336 | 0.336 | 0.000 | 0.000 | 0.000 | 0.049 | 0.000 | 0.000 |
Rec37 | 14.361 | 16.574 | 6.423 | 6.589 | 1.070 | 1.527 | 3.918 | 4.314 | 0.343 | 0.816 |
Rec39 | 12.561 | 14.839 | 5.838 | 5.901 | 0.865 | 0.908 | 2.497 | 4.152 | 0.649 | 0.702 |
Rec41 | 15.544 | 17.773 | 6.512 | 6.512 | 1.210 | 1.512 | 4.980 | 5.569 | 0.524 | 0.913 |
Tab.2 Comparison of computational results among HBSA, BSA and HBSA1~HBSA3
算例 | BSA | HBSA1 | HBSA2 | HBSA3 | HBSA | |||||
---|---|---|---|---|---|---|---|---|---|---|
BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | |
平均值 | 7.635 | 10.933 | 3.749 | 4.036 | 0.213 | 0.271 | 1.546 | 2.246 | 0.098 | 0.173 |
Rec01 | 4.411 | 8.528 | 2.005 | 3.769 | 0.000 | 0.000 | 0.321 | 1.235 | 0.000 | 0.000 |
Rec03 | 2.435 | 6.353 | 1.713 | 1.713 | 0.000 | 0.000 | 0.180 | 0.180 | 0.000 | 0.000 |
Rec05 | 3.140 | 4.630 | 0.242 | 0.322 | 0.000 | 0.000 | 0.242 | 0.242 | 0.000 | 0.000 |
Rec07 | 2.299 | 6.660 | 1.149 | 3.078 | 0.000 | 0.000 | 0.000 | 1.034 | 0.000 | 0.000 |
Rec09 | 4.099 | 9.073 | 1.431 | 1.614 | 0.000 | 0.000 | 1.301 | 1.405 | 0.000 | 0.000 |
Rec11 | 6.429 | 10.887 | 6.429 | 6.429 | 0.000 | 0.000 | 0.629 | 2.068 | 0.000 | 0.000 |
Rec13 | 4.560 | 9.440 | 1.969 | 2.052 | 0.000 | 0.000 | 1.969 | 1.969 | 0.000 | 0.000 |
Rec15 | 4.410 | 6.905 | 5.385 | 5.385 | 0.000 | 0.000 | 1.179 | 1.600 | 0.000 | 0.000 |
Rec17 | 5.941 | 10.862 | 4.101 | 4.101 | 0.000 | 0.000 | 2.208 | 3.344 | 0.000 | 0.000 |
Rec19 | 9.412 | 11.804 | 3.679 | 3.794 | 0.287 | 0.287 | 0.812 | 1.223 | 0.143 | 0.268 |
Rec21 | 7.685 | 10.902 | 4.512 | 4.730 | 0.188 | 0.149 | 1.438 | 1.616 | 0.149 | 0.149 |
Rec23 | 7.161 | 11.599 | 7.608 | 7.668 | 0.298 | 0.378 | 1.840 | 3.590 | 0.149 | 0.219 |
Rec25 | 7.879 | 11.834 | 4.497 | 4.759 | 0.119 | 0.263 | 3.024 | 3.438 | 0.000 | 0.103 |
Rec27 | 9.608 | 13.184 | 3.793 | 4.197 | 0.169 | 0.236 | 2.191 | 2.790 | 0.000 | 0.181 |
Rec29 | 12.505 | 15.826 | 4.416 | 4.486 | 0.000 | 0.061 | 1.355 | 3.244 | 0.000 | 0.026 |
Rec31 | 11.856 | 13.348 | 5.123 | 5.511 | 0.263 | 0.361 | 1.872 | 3.369 | 0.099 | 0.246 |
Rec33 | 8.028 | 10.780 | 1.574 | 1.805 | 0.000 | 0.000 | 0.514 | 0.732 | 0.000 | 0.000 |
Rec35 | 6.012 | 7.795 | 0.336 | 0.336 | 0.000 | 0.000 | 0.000 | 0.049 | 0.000 | 0.000 |
Rec37 | 14.361 | 16.574 | 6.423 | 6.589 | 1.070 | 1.527 | 3.918 | 4.314 | 0.343 | 0.816 |
Rec39 | 12.561 | 14.839 | 5.838 | 5.901 | 0.865 | 0.908 | 2.497 | 4.152 | 0.649 | 0.702 |
Rec41 | 15.544 | 17.773 | 6.512 | 6.512 | 1.210 | 1.512 | 4.980 | 5.569 | 0.524 | 0.913 |
算例 | L-HDE | HSOS | MCTLBO | DWPA | HBSA | |||||
---|---|---|---|---|---|---|---|---|---|---|
BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | |
平均值 | 0.502 | 0.757 | 0.583 | 1.050 | 0.367 | 0.747 | 0.427 | 0.759 | 0.098 | 0.173 |
Rec01 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.120 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec03 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.068 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec05 | 0.242 | 0.242 | 0.000 | 0.000 | 0.000 | 0.217 | 0.000 | 0.213 | 0.000 | 0.000 |
Rec07 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.632 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec09 | 0.000 | 0.026 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec11 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec13 | 0.000 | 0.275 | 0.000 | 0.273 | 0.000 | 0.192 | 0.000 | 0.129 | 0.000 | 0.000 |
Rec15 | 0.000 | 0.523 | 0.000 | 0.523 | 0.000 | 0.356 | 0.000 | 0.213 | 0.000 | 0.000 |
Rec17 | 0.000 | 0.363 | 0.000 | 1.388 | 0.000 | 0.037 | 0.000 | 0.043 | 0.000 | 0.000 |
Rec19 | 0.287 | 0.702 | 0.620 | 1.274 | 0.287 | 0.430 | 0.287 | 0.978 | 0.143 | 0.268 |
Rec21 | 0.645 | 1.279 | 1.437 | 1.537 | 1.438 | 1.557 | 0.543 | 1.157 | 0.149 | 0.149 |
Rec23 | 0.348 | 0.428 | 0.348 | 1.280 | 0.149 | 0.686 | 0.403 | 0.616 | 0.149 | 0.219 |
Rec25 | 0.557 | 1.082 | 0.835 | 2.067 | 0.199 | 0.809 | 0.379 | 1.027 | 0.000 | 0.103 |
Rec27 | 0.253 | 0.851 | 0.969 | 1.432 | 0.253 | 1.016 | 0.433 | 0.952 | 0.000 | 0.181 |
Rec29 | 0.831 | 1.049 | 0.831 | 2.488 | 0.000 | 0.822 | 0.475 | 1.183 | 0.000 | 0.026 |
Rec31 | 0.427 | 0.644 | 0.427 | 0.644 | 0.427 | 1.307 | 0.987 | 0.971 | 0.099 | 0.246 |
Rec33 | 0.000 | 0.244 | 0.000 | 0.565 | 0.128 | 0.777 | 0.019 | 0.156 | 0.000 | 0.000 |
Rec35 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.026 | 0.000 | 0.112 | 0.000 | 0.000 |
Rec37 | 2.565 | 3.001 | 2.565 | 3.001 | 1.959 | 2.430 | 1.158 | 2.805 | 0.343 | 0.816 |
Rec39 | 1.730 | 1.832 | 1.828 | 2.222 | 0.904 | 1.613 | 1.633 | 2.374 | 0.649 | 0.702 |
Rec41 | 2.661 | 3.351 | 2.388 | 3.350 | 1.956 | 2.601 | 2.660 | 3.003 | 0.524 | 0.913 |
Tab.3 Comparison of computational results among HBSA and four optimization algorithms
算例 | L-HDE | HSOS | MCTLBO | DWPA | HBSA | |||||
---|---|---|---|---|---|---|---|---|---|---|
BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | BRE | ARE | |
平均值 | 0.502 | 0.757 | 0.583 | 1.050 | 0.367 | 0.747 | 0.427 | 0.759 | 0.098 | 0.173 |
Rec01 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.120 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec03 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.068 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec05 | 0.242 | 0.242 | 0.000 | 0.000 | 0.000 | 0.217 | 0.000 | 0.213 | 0.000 | 0.000 |
Rec07 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.632 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec09 | 0.000 | 0.026 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec11 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Rec13 | 0.000 | 0.275 | 0.000 | 0.273 | 0.000 | 0.192 | 0.000 | 0.129 | 0.000 | 0.000 |
Rec15 | 0.000 | 0.523 | 0.000 | 0.523 | 0.000 | 0.356 | 0.000 | 0.213 | 0.000 | 0.000 |
Rec17 | 0.000 | 0.363 | 0.000 | 1.388 | 0.000 | 0.037 | 0.000 | 0.043 | 0.000 | 0.000 |
Rec19 | 0.287 | 0.702 | 0.620 | 1.274 | 0.287 | 0.430 | 0.287 | 0.978 | 0.143 | 0.268 |
Rec21 | 0.645 | 1.279 | 1.437 | 1.537 | 1.438 | 1.557 | 0.543 | 1.157 | 0.149 | 0.149 |
Rec23 | 0.348 | 0.428 | 0.348 | 1.280 | 0.149 | 0.686 | 0.403 | 0.616 | 0.149 | 0.219 |
Rec25 | 0.557 | 1.082 | 0.835 | 2.067 | 0.199 | 0.809 | 0.379 | 1.027 | 0.000 | 0.103 |
Rec27 | 0.253 | 0.851 | 0.969 | 1.432 | 0.253 | 1.016 | 0.433 | 0.952 | 0.000 | 0.181 |
Rec29 | 0.831 | 1.049 | 0.831 | 2.488 | 0.000 | 0.822 | 0.475 | 1.183 | 0.000 | 0.026 |
Rec31 | 0.427 | 0.644 | 0.427 | 0.644 | 0.427 | 1.307 | 0.987 | 0.971 | 0.099 | 0.246 |
Rec33 | 0.000 | 0.244 | 0.000 | 0.565 | 0.128 | 0.777 | 0.019 | 0.156 | 0.000 | 0.000 |
Rec35 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.026 | 0.000 | 0.112 | 0.000 | 0.000 |
Rec37 | 2.565 | 3.001 | 2.565 | 3.001 | 1.959 | 2.430 | 1.158 | 2.805 | 0.343 | 0.816 |
Rec39 | 1.730 | 1.832 | 1.828 | 2.222 | 0.904 | 1.613 | 1.633 | 2.374 | 0.649 | 0.702 |
Rec41 | 2.661 | 3.351 | 2.388 | 3.350 | 1.956 | 2.601 | 2.660 | 3.003 | 0.524 | 0.913 |
1 | GAREY M R, JOHNSON D S, SETHI R. The complexity of flowshop and jobshop scheduling[J]. Mathematics of Operations Research, 1976, 1(2): 117-129. 10.1287/moor.1.2.117 |
2 | CHUNG C S, FLYNN J, KIRCA O. A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems[J]. International Journal of Production Economics, 2002, 79(3): 185-196. 10.1016/s0925-5273(02)00234-7 |
3 | NAWAZ M, ENSCORE E E, Jr., HAM I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem[J]. Omega, 1983, 11(1): 91-95. 10.1016/0305-0483(83)90088-9 |
4 | JOHNSON S M. Optimal two- and three-stage production schedules with setup times included[J]. Naval Research Logistics Quarterly, 1954, 1(1): 61-68. 10.1002/nav.3800010110 |
5 | TASGETIREN M F, LIANG Y C, SEVKLI M, et al. A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem[J]. European Journal of Operational Research, 2007, 177(3): 1930-1947. 10.1016/j.ejor.2005.12.024 |
6 | CEBERIO J, IRUROZKI E, MENDIBURU A, et al. A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems[J]. Progress in Artificial Intelligence, 2012, 1(1): 103-117. 10.1007/s13748-011-0005-3 |
7 | LIU Y, YIN M H, GU W X. An effective differential evolution algorithm for permutation flow shop scheduling problem[J]. Applied Mathematics and Computation, 2014, 248: 143-159. 10.1016/j.amc.2014.09.010 |
8 | 亓祥波,朱云龙,张丁一. 求解PFSP的双种群协同学习算法[J]. 控制与决策, 2017, 32(1): 12-20. 10.13195/j.kzyjc.2015.1568 |
QI X B, ZHU Y L, ZHANG D Y. Double population co-learning algorithm for permutation flow-shop scheduling problems[J]. Control and Decision, 2017, 32(1): 12-20. 10.13195/j.kzyjc.2015.1568 | |
9 | 秦旋,房子涵,张赵鑫. 混合共生生物搜索算法求解置换流水车间调度问题[J]. 浙江大学学报(工学版), 2020, 54(4): 712-721. 10.3785/j.issn.1008-973X.2020.04.010 |
QIN X, FANG Z H, ZHANG Z X. Hybrid symbiotic organisms search algorithm for permutation flow shop scheduling problem[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 712-721. 10.3785/j.issn.1008-973X.2020.04.010 | |
10 | MENG X B, GAO X Z, LU L H, et al. A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2016, 28(4): 673-687. 10.1080/0952813x.2015.1042530 |
11 | 罗钧,刘泽伟,张平,等. 基于非线性因子的改进鸟群算法在动态能耗管理中的应用[J]. 电子与信息学报, 2020, 42(3): 729-736. 10.11999/JEIT190264 |
LUO J, LIU Z W, ZHAGN P, et al. Application of improved bird swarm algorithm based on nonlinear factor in dynamic energy management[J]. Journal of Electronics and Information Technology, 2020, 42(3): 729-736. 10.11999/JEIT190264 | |
12 | 张玉,卢子广,卢泉,等. 基于Levy飞行改进鸟群算法的光伏直流微电网优化配置研究[J]. 太阳能学报, 2021, 42(5): 214-220. |
ZHANG Y, LU Z G, LU Q, et al. Research on optimal configuration of photovoltaic DC microgrid based on Levy flight improved bird swarm algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 214-220. | |
13 | 陈少,吉卫喜,仇永涛,等. 基于改进鸟群算法的双资源约束离散智能车间调度问题研究[J]. 现代制造工程, 2019(4): 20-26. |
CHEN S, JI W X, QIU Y T, et al. Improved bird swarm algorithm for dual resource constrained discrete intelligent job shop scheduling problem[J]. Modern Manufacturing Engineering, 2019(4): 20-26. | |
14 | 屈迟文,傅彦铭,罗明山,等. 求解柔性作业车间调度问题的鸟群算法[J]. 计算机工程与应用, 2018, 54(17): 249-257. |
QU C W, FU Y M, LUO M S, et al. Solving flexible job-shop scheduling problem using bird swarm algorithm[J]. Computer Engineering and Applications, 2018, 54(17): 249-257. | |
15 | REEVES C R. A genetic algorithm for flowshop sequencing[J]. Computers and Operations Research, 1995, 22(1): 5-13. 10.1016/0305-0548(93)e0014-k |
16 | RIM C, PIAO S H, LI G, et al. A niching chaos optimization algorithm for multimodal optimization[J]. Soft Computing, 2018, 22(2): 621-633. 10.1007/s00500-016-2360-2 |
17 | LIU W B, JIN Y, PRICE M. A new improved NEH heuristic for permutation flowshop scheduling problems[J]. International Journal of Production Economics, 2017, 193: 21-30. 10.1016/j.ijpe.2017.06.026 |
18 | KUMAR S, MANDAL K K, CHAKRABORTY N. Optimal DG placement by multi-objective opposition based chaotic differential evolution for techno-economic analysis[J]. Applied Soft Computing, 2019, 78: 70-83. 10.1016/j.asoc.2019.02.013 |
19 | RUIZ R, STÜTZLE T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[J]. European Journal of Operational Research, 2007, 177(3): 2033-2049. 10.1016/j.ejor.2005.12.009 |
20 | PAN Q K, RUIZ R. An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem[J]. Omega, 2014, 44: 41-50. 10.1016/j.omega.2013.10.002 |
21 | FARAHMAND RAD S, RUIZ R, BOROOJERDIAN N. New high performing heuristics for minimizing makespan in permutation flowshops[J]. Omega, 2009, 37(2): 331-345. 10.1016/j.omega.2007.02.002 |
22 | TAILLARD E. Some efficient heuristic methods for the flow shop sequencing problem[J]. European Journal of Operational Research, 1990, 47(1): 65-74. 10.1016/0377-2217(90)90090-x |
23 | 谢锐强,张惠珍. 求解置换流水车间调度的离散狼群算法[J]. 控制工程, 2020, 27(2): 288-296. |
XIE R Q, ZHNAG H Z. Discrete wolf pack algorithm for permutation flow shop scheduling problem[J]. Control Engineering of China, 2020, 27(2): 288-296. | |
24 | 张其文,张斌. 基于教学优化算法求解置换流水车间调度问题[J]. 系统仿真学报, 2022, 34(5): 1054-1063. 10.16182/j.issn1004731x.joss.20-0983 |
ZHANG Q W, ZHANG B. Teaching-learning-based optimization algorithm for permutation flowshop scheduling[J]. Journal of System Simulation, 2022, 34(5): 1054-1063. 10.16182/j.issn1004731x.joss.20-0983 |
[1] | Xingyu ZHAO, Xiaofeng WANG, Yi YANG, Lichao PANG, Lan YANG. Stochastic local search algorithm for solving exact satisfiability problem [J]. Journal of Computer Applications, 2024, 44(3): 842-848. |
[2] | Qin LENG, Zhengyuan MAO. Two echelon location-routing optimization considering facility sizing decision [J]. Journal of Computer Applications, 2024, 44(11): 3513-3520. |
[3] | Bin LI, Zhibin TANG. Multiple level binary imperialist competitive algorithm for solving heterogeneous multiple knapsack problem [J]. Journal of Computer Applications, 2023, 43(9): 2855-2867. |
[4] | Kuineng CHEN, Xiaofang YUAN. Multi-objective hybrid evolutionary algorithm for solving open-shop scheduling problem with controllable processing time [J]. Journal of Computer Applications, 2022, 42(8): 2617-2627. |
[5] | ZHAN Hang, HE Lang, HUANG Zhangcan, LI Huafeng, ZHANG Qiang, TAN Qing. Improved feature selection and classification algorithm for gene expression programming based on layer distance [J]. Journal of Computer Applications, 2021, 41(9): 2658-2667. |
[6] | DENG Wenhan, ZHANG Ming, WANG Lijin, ZHONG Yiwen. Hybrid population-based incremental learning algorithm for solving closed-loop layout problem [J]. Journal of Computer Applications, 2021, 41(1): 95-102. |
[7] | CHEN Zhen, ZHONG Yiwen, LIN Juan. Hybrid greedy genetic algorithm for solving 0-1 knapsack problem [J]. Journal of Computer Applications, 2021, 41(1): 87-94. |
[8] | ZHANG Yuzhou, XU Tingzheng, ZHENG Junshuai, RAO Shun. Modeling and optimization of disaster relief vehicle routing problem considering urgency [J]. Journal of Computer Applications, 2019, 39(8): 2444-2449. |
[9] | SONG Ting, CHEN Mao, WU Chao, ZHANG Gongzhao. Automated course arrangement algorithm based on multi-class iterated local search [J]. Journal of Computer Applications, 2019, 39(6): 1760-1765. |
[10] | CHEN Linfeng, QI Xuemei, CHEN Junwen, HUANG Cheng, CHEN Fulong. Quantum-inspired migrating birds co-optimization algorithm for lot-streaming flow shop scheduling problem [J]. Journal of Computer Applications, 2019, 39(11): 3250-3256. |
[11] | LYU Jinfeng, ZHAO Huaici. Maritime cooperative search planning based on memory bank particle swarm optimization [J]. Journal of Computer Applications, 2018, 38(9): 2477-2482. |
[12] | LI Bin, CHEN Aibin, ZHOU Guoxiong, ZHOU Tao. Wolves optimization algorithm based on Cell-DEVS for forest fire-fighting resource scheduling [J]. Journal of Computer Applications, 2018, 38(5): 1494-1499. |
[13] | WANG Xiaojing, PENG Hu, DENG Changshou, HUANG Haiyan, ZHANG Yan, TAN Xujie. Firefly algorithm based on uniform local search and variable step size [J]. Journal of Computer Applications, 2018, 38(3): 715-721. |
[14] | GU Junhua, HUO Shijie, WU Junyan, YIN Jun, ZHANG Suqi. Parallel multi-layer graph partitioning method for solving maximum clique problems [J]. Journal of Computer Applications, 2018, 38(12): 3425-3432. |
[15] | WANG Jiajun, YU Qiang, ZHANG Jingjing. Improvement algorithm of image inpainting based on priority-belief propagation [J]. Journal of Computer Applications, 2016, 36(4): 1115-1119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||