Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3610-3616.DOI: 10.11772/j.issn.1001-9081.2021091696
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Weichao DANG, Zhiyu YAO(), Shangwang BAI, Gaimei GAO, Chunxia LIU
Received:
2021-09-26
Revised:
2022-03-07
Accepted:
2022-03-21
Online:
2022-11-14
Published:
2022-11-10
Contact:
Zhiyu YAO
About author:
DANG Weichao, born in 1974, Ph. D., associate professor. His research interests include intelligent computing, software reliability.Supported by:
通讯作者:
姚志宇
作者简介:
党伟超(1974—),男,山西运城人,副教授,博士,CCF会员,主要研究方向:智能计算、软件可靠性基金资助:
CLC Number:
Weichao DANG, Zhiyu YAO, Shangwang BAI, Gaimei GAO, Chunxia LIU. Session recommendation method based on graph model and attention model[J]. Journal of Computer Applications, 2022, 42(11): 3610-3616.
党伟超, 姚志宇, 白尚旺, 高改梅, 刘春霞. 基于图模型和注意力模型的会话推荐方法[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3610-3616.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021091696
数据集 | 点击数 | 训练 会话数 | 测试 会话数 | 项目数 | 平均 长度 |
---|---|---|---|---|---|
Yoochoose 1/4 | 8 326 407 | 5 917 745 | 55 898 | 29 618 | 5.71 |
Diginetica | 982 961 | 719 470 | 60 858 | 43 097 | 5.12 |
Tab. 1 Statistics of data set information
数据集 | 点击数 | 训练 会话数 | 测试 会话数 | 项目数 | 平均 长度 |
---|---|---|---|---|---|
Yoochoose 1/4 | 8 326 407 | 5 917 745 | 55 898 | 29 618 | 5.71 |
Diginetica | 982 961 | 719 470 | 60 858 | 43 097 | 5.12 |
方法 | Yoochoose 1/4 | Diginetica | ||
---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | |
NARM[ | 69.73 | 29.23 | 49.70 | 16.17 |
STAMP[ | 70.44 | 30.00 | 45.64 | 14.32 |
SR‑GNN[ | 71.36 | 31.89 | 50.73 | 17.59 |
LESSR[ | 71.83 | 32.70 | 51.71 | 18.15 |
SRMGNN[ | 70.62 | 31.28 | 50.16 | 17.04 |
SR‑GM‑AM | 72.41 | 35.34 | 53.86 | 18.98 |
Tab. 2 Comparison of experimental results
方法 | Yoochoose 1/4 | Diginetica | ||
---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | |
NARM[ | 69.73 | 29.23 | 49.70 | 16.17 |
STAMP[ | 70.44 | 30.00 | 45.64 | 14.32 |
SR‑GNN[ | 71.36 | 31.89 | 50.73 | 17.59 |
LESSR[ | 71.83 | 32.70 | 51.71 | 18.15 |
SRMGNN[ | 70.62 | 31.28 | 50.16 | 17.04 |
SR‑GM‑AM | 72.41 | 35.34 | 53.86 | 18.98 |
方法 | Yoochoose 1/4 | Diginetica | ||
---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | |
L | 71.83 | 35.23 | 52.69 | 18.67 |
1‑hop | 72.44 | 35.38 | 53.64 | 18.82 |
SR‑GM‑AM | 72.41 | 35.34 | 53.86 | 18.98 |
Tab. 3 Impact of global graph on model
方法 | Yoochoose 1/4 | Diginetica | ||
---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | |
L | 71.83 | 35.23 | 52.69 | 18.67 |
1‑hop | 72.44 | 35.38 | 53.64 | 18.82 |
SR‑GM‑AM | 72.41 | 35.34 | 53.86 | 18.98 |
方法 | Yoochoose 1/4 | Diginetica | ||
---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | |
SR‑GM‑TA | 72.06 | 35.27 | 53.24 | 18.77 |
SR‑GM‑SA | 72.18 | 35.30 | 53.52. | 18.86 |
SR‑GM‑AM | 72.41 | 35.34 | 53.86 | 18.98 |
Tab. 4 Impact of attention on model
方法 | Yoochoose 1/4 | Diginetica | ||
---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | |
SR‑GM‑TA | 72.06 | 35.27 | 53.24 | 18.77 |
SR‑GM‑SA | 72.18 | 35.30 | 53.52. | 18.86 |
SR‑GM‑AM | 72.41 | 35.34 | 53.86 | 18.98 |
激活函数 | Yoochoose 1/4 | Diginetica | ||
---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | |
Sigmoid | 72.24 | 35.31 | 53.62 | 18.88 |
Tanh | 72.29 | 35.31 | 53.67 | 18.91 |
ReLU | 72.41 | 35.34 | 53.86 | 18.98 |
Tab. 5 Impact of activation function on model
激活函数 | Yoochoose 1/4 | Diginetica | ||
---|---|---|---|---|
P@20 | MRR@20 | P@20 | MRR@20 | |
Sigmoid | 72.24 | 35.31 | 53.62 | 18.88 |
Tanh | 72.29 | 35.31 | 53.67 | 18.91 |
ReLU | 72.41 | 35.34 | 53.86 | 18.98 |
点击数 | 训练会话数 | 测试会话数 | 项目数 | 平均长度 |
---|---|---|---|---|
12 391 | 1 205 | 99 | 310 | 3.57 |
Tab. 6 Statistics of Sample data set
点击数 | 训练会话数 | 测试会话数 | 项目数 | 平均长度 |
---|---|---|---|---|
12 391 | 1 205 | 99 | 310 | 3.57 |
数据集 | P@20 | MRR@20 |
---|---|---|
Yoochoose 1/4 | 72.41 | 35.34 |
Diginetica | 53.86 | 18.98 |
Sample | 8.08 | 5.45 |
Tab. 7 Impact of sparse data set on model
数据集 | P@20 | MRR@20 |
---|---|---|
Yoochoose 1/4 | 72.41 | 35.34 |
Diginetica | 53.86 | 18.98 |
Sample | 8.08 | 5.45 |
1 | 赵海燕,赵佳斌,陈庆奎,等.会话推荐系统[J].小型微型计算机系统,2019,40(9):63-69. 10.3969/j.issn.1000-1220.2019.09.010 |
ZHAO H Y, ZHAO J B, CHEN Q K, et al. Session‑based recommendation system[J]. Journal of Chinese Computer Systems, 2019, 40(9): 63-69. 10.3969/j.issn.1000-1220.2019.09.010 | |
2 | 桂越.基于会话的推荐算法研究[D].北京:北京邮电大学,2019:7-16. |
GUI Y. Research on session‑based recommendation algorithm[D]. Beijing: Beijing University of Posts and Telecommunications, 2019: 7-16. | |
3 | WU S, TANG Y, ZHU Y, et al. Session‑based recommendation with graph neural networks [C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2019: 346-353. 10.1609/aaai.v33i01.3301346 |
4 | XU C, ZHAO P, LIU Y, et al. Graph contextualized self‑attention network for session‑based recommendation [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2019: 3940-3946. 10.24963/ijcai.2019/547 |
5 | LI J, REN P, CHEN Z, et al. Neural attentive session‑based recommendation [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428. 10.1145/3132847.3132926 |
6 | LIU Q, ZENG Y, MOKHOSI R, et al. Short‑term attention/memory priority model for session‑based recommendation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1831-1839. 10.1145/3219819.3219950 |
7 | TAN Y K, XU X, LIU Y. Improved recurrent neural networks for session‑based recommendations [C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 17-22. 10.1145/2988450.2988452 |
8 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
9 | WANG H, LIU G, LIU A, et al. DMRAN: a hierarchical fine‑ grained attention‑based network for recommendation [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2019: 3698-3704. 10.24963/ijcai.2019/513 |
10 | KANG W‑C, MCAULEY J. Self‑attentive sequential recommendation [C]// Proceedings of the 2018 IEEE International Conference on Data Mining. Piscataway: IEEE, 2018: 197-206. 10.1109/icdm.2018.00035 |
11 | SONG J, SHEN H, OU Z, et al. ISLF: interest shift and latent factors combination model for session‑based recommendation [C]// Proceedings of the Twenty‑Eighth International Joint Conference on Artificial Intelligence. California: IJCAI, 2019: 5765‑5771. 10.24963/ijcai.2019/799 |
12 | WANG S, HU L, WANG Y, et al. Modeling multi‑purpose sessions for next‑item recommendations via mixture‑channel purpose routing networks [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: IJCAI, 2019: 3771-3777. 10.24963/ijcai.2019/523 |
13 | 南宁,杨程屹,武志昊.基于多图神经网络的会话感知推荐模型[J].计算机应用,2021,41(2):330-336. 10.11772/j.issn.1001-9081.2020060805 |
NAN N, YANG C Y, WU Z H. Multi‑graph neural network‑based session perception recommendation model[J]. Journal of Computer Applications, 2021, 41(2): 330-336. 10.11772/j.issn.1001-9081.2020060805 | |
14 | 孙鑫,刘学军,李斌,等.基于图神经网络和时间注意力的会话序列推荐[J].计算机工程与设计,2020,41(10):2913-2920. 10.16208/j.issn1000-7024.2020.10.036 |
SUN X, LIU X J, LI B, et al. Graph neural networks with time attention mechanism for session‑based recommendations[J]. Computer Engineering and Design, 2020, 41(10): 2913-2920. 10.16208/j.issn1000-7024.2020.10.036 | |
15 | SHEN Y, LI H, YI S, et al. Person re‑identification with deep similarity‑guided graph neural network [C]// Proceedings of the 2018 European Conference on Computer Vision, LNIP 11219. Cham: Springer, 2018: 508-526. |
16 | 呼延康,樊鑫,余乐天,等.图神经网络回归的人脸超分辨率重建[J].软件学报,2018,29(4):914-925. |
HU Y K, FAN X, YU L T, et al. Graph based neural network regression strategy for facial image super‑resolution[J]. Journal of Software, 2018, 29(4): 914-925. | |
17 | QIU R, LI J, HUANG Z, et al. Rethinking the item order in session‑based recommendation with graph neural networks [C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 579-588. 10.1145/3357384.3358010 |
18 | 党伟超,姚志宇,白尚旺,等.基于图神经网络和注意力机制的会话推荐[J]. 计算机工程与设计, 2022, 43(10): 2953-2958. |
DANG W C, YAO Z Y, BAI S W, et al. Session recommendation based on graph neural network and attention mechanism [J]. Computer Engineering and Design, 2022,43(10): 2953-2958. | |
19 | CHEN T, C‑W WONG R. Handling information loss of graph neural networks for session‑based recommendation [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 1172-1180. 10.1145/3394486.3403170 |
20 | 任俊伟,曾诚,肖丝雨,等.基于会话的多粒度图神经网络推荐模型[J].计算机应用,2021,41(11):3164-3170. 10.11772/j.issn.1001-9081.2021010060 |
REN J W, ZENG C, XIAO S Y, et al. Session‑based recommendation model of multi‑granular graph neural network[J]. Journal of Computer Applications, 2021, 41(11): 3164-3170. 10.11772/j.issn.1001-9081.2021010060 |
[1] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[2] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[3] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[4] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[5] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[6] | Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. |
[7] | Haodong ZHENG, Hua MA, Yingchao XIE, Wensheng TANG. Knowledge tracing model based on graph neural network blending with forgetting factors and memory gate [J]. Journal of Computer Applications, 2023, 43(9): 2747-2752. |
[8] | Hongjun HENG, Dingcheng YANG. Knowledge enhanced aspect word interactive graph neural network [J]. Journal of Computer Applications, 2023, 43(8): 2412-2419. |
[9] | Kun ZHANG, Fengyu YANG, Fa ZHONG, Guangdong ZENG, Shijian ZHOU. Source code vulnerability detection based on hybrid code representation [J]. Journal of Computer Applications, 2023, 43(8): 2517-2526. |
[10] | Zifang XIA, Yaxin YU, Ziteng WANG, Jiaqi QIAO. Explainable recommendation mechanism by fusion collaborative knowledge graph and counterfactual inference [J]. Journal of Computer Applications, 2023, 43(7): 2001-2009. |
[11] | Kejun JIN, Hongtao YU, Yiteng WU, Shaomei LI, Jianpeng ZHANG, Honghao ZHENG. Improved defense method for graph convolutional network based on singular value decomposition [J]. Journal of Computer Applications, 2023, 43(5): 1511-1517. |
[12] | Hao SUN, Jian CAO, Haisheng LI, Dianhui MAO. Session-based recommendation model based on enhanced capsule network [J]. Journal of Computer Applications, 2023, 43(4): 1043-1049. |
[13] | Lubao LI, Tian CHEN, Fuji REN, Beibei LUO. Bimodal emotion recognition method based on graph neural network and attention [J]. Journal of Computer Applications, 2023, 43(3): 700-705. |
[14] | Yu WANG, Yubo YUAN, Yi GUO, Jiajie ZHANG. Sentiment boosting model for emotion recognition in conversation text [J]. Journal of Computer Applications, 2023, 43(3): 706-712. |
[15] | Xuanyu SUN, Yancui SHI. Session-based recommendation model by graph neural network fused with item influence [J]. Journal of Computer Applications, 2023, 43(12): 3689-3696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||