Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (11): 3413-3420.DOI: 10.11772/j.issn.1001-9081.2021111934
Special Issue: 2021 CCF中国区块链技术大会(CCF CBCC 2021)
• 2021 CCF China Blockchain Conference (CCF CBCC 2021) • Previous Articles Next Articles
Rui SUN1,2, Chao LI1,2(), Wei WANG1,2, Endong TONG1,2, Jian WANG1,2, Jiqiang LIU1,2
Received:
2021-11-14
Revised:
2021-12-08
Accepted:
2021-12-23
Online:
2022-01-19
Published:
2022-11-10
Contact:
Chao LI
About author:
SUN Rui, born in 1998, M. S. candidate. Her research interests include blockchain.Supported by:
孙睿1,2, 李超1,2(), 王伟1,2, 童恩栋1,2, 王健1,2, 刘吉强1,2
通讯作者:
李超
作者简介:
孙睿(1998—),女,吉林扶余人,硕士研究生,主要研究方向:区块链基金资助:
CLC Number:
Rui SUN, Chao LI, Wei WANG, Endong TONG, Jian WANG, Jiqiang LIU. Research progress of blockchain‑based federated learning[J]. Journal of Computer Applications, 2022, 42(11): 3413-3420.
孙睿, 李超, 王伟, 童恩栋, 王健, 刘吉强. 基于区块链的联邦学习研究进展[J]. 《计算机应用》唯一官方网站, 2022, 42(11): 3413-3420.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021111934
结构 | 种类 | 共识机制 | 激励机制 |
---|---|---|---|
BlockFL[ | 公链 | PoW | 数据和挖矿奖励 |
FL‑Block[ | 公链 | PoW | 数据和挖矿奖励 |
BFL[ | 公链 | PoW | 数据和挖矿奖励 |
BFL[ | 私链 | 代理权益证明 | 行动的影响 |
FLChain[ | 公链 | 拜占庭/PoW | — |
BFEL[ | 公链/联盟链 | 验证证明 | 贡献 |
BFLC[ | 联盟链 | CCM | 根据贡献利益共享 |
FL[ | 联盟链 | 权益证明/拜占庭 | 多重Krum和声誉 |
Tab. 1 Comparison of different BFL frameworks
结构 | 种类 | 共识机制 | 激励机制 |
---|---|---|---|
BlockFL[ | 公链 | PoW | 数据和挖矿奖励 |
FL‑Block[ | 公链 | PoW | 数据和挖矿奖励 |
BFL[ | 公链 | PoW | 数据和挖矿奖励 |
BFL[ | 私链 | 代理权益证明 | 行动的影响 |
FLChain[ | 公链 | 拜占庭/PoW | — |
BFEL[ | 公链/联盟链 | 验证证明 | 贡献 |
BFLC[ | 联盟链 | CCM | 根据贡献利益共享 |
FL[ | 联盟链 | 权益证明/拜占庭 | 多重Krum和声誉 |
解决的问题 | 解决方法 |
---|---|
激励机制 | 数据奖励和挖矿奖励[ |
贡献利益共享[ | |
多重Krum计算声誉[ | |
智能合约[ | |
投毒攻击 | 验证证明共识机制[ |
多重Krum共识机制[ | |
认知计算[ | |
计分机制[ | |
提高学习效率 | 从边缘数据学习模型的异步学习[ |
提高模型验证效率 | 委员会共识机制[ |
提高通信效率 | 梯度压缩[ |
提高模型训练效率 | 超参数优化和弹性权重合并[ |
Tab. 2 Some problems solved by BFL
解决的问题 | 解决方法 |
---|---|
激励机制 | 数据奖励和挖矿奖励[ |
贡献利益共享[ | |
多重Krum计算声誉[ | |
智能合约[ | |
投毒攻击 | 验证证明共识机制[ |
多重Krum共识机制[ | |
认知计算[ | |
计分机制[ | |
提高学习效率 | 从边缘数据学习模型的异步学习[ |
提高模型验证效率 | 委员会共识机制[ |
提高通信效率 | 梯度压缩[ |
提高模型训练效率 | 超参数优化和弹性权重合并[ |
应用领域 | 功能 |
---|---|
物联网 | 保证数据安全[ |
工业物联网的故障检测[ | |
优化家电功能[ | |
医疗服务 | 保护病人隐私[ |
预测糖尿病风险[ | |
医疗物联网设备的隐私算法[ | |
新冠病毒诊断共享[ | |
医疗信息保护和共享[ | |
提高新冠病毒识别率[ | |
车联网 | 预测自动车辆间的有效通信[ |
车辆运行数据共享[ | |
提高车内网络可靠性和安全性[ | |
内容缓存 | 提高缓存命中率[ |
位置预测 | 更准确的位置预测和隐私保护[ |
移动众感知 | 保护无人机学习后的隐私[ |
灾难响应 | 无人机和6G网络灾难响应系统[ |
新闻推荐 | 过滤信息,精准推荐,隐私保护[ |
Tab. 3 Summary of applications of BFL
应用领域 | 功能 |
---|---|
物联网 | 保证数据安全[ |
工业物联网的故障检测[ | |
优化家电功能[ | |
医疗服务 | 保护病人隐私[ |
预测糖尿病风险[ | |
医疗物联网设备的隐私算法[ | |
新冠病毒诊断共享[ | |
医疗信息保护和共享[ | |
提高新冠病毒识别率[ | |
车联网 | 预测自动车辆间的有效通信[ |
车辆运行数据共享[ | |
提高车内网络可靠性和安全性[ | |
内容缓存 | 提高缓存命中率[ |
位置预测 | 更准确的位置预测和隐私保护[ |
移动众感知 | 保护无人机学习后的隐私[ |
灾难响应 | 无人机和6G网络灾难响应系统[ |
新闻推荐 | 过滤信息,精准推荐,隐私保护[ |
1 | LI Y Z, CHEN C, LIU N, et al. A blockchain‑based decentralized federated learning framework with committee consensus[J]. IEEE Network, 2021, 35(1): 234-241. 10.1109/mnet.011.2000263 |
2 | McMAHAN H B, MOORE E, RAMAGE D, et al. Communication‑ efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017:1273-1282. |
3 | KONEČNÝ J, McMAHAN H B, YU F X, et al. Federated learning: Strategies for improving communication efficiency[EB/OL]. (2017-10-30) [2021-07-13].. |
4 | LI L, FAN Y X, TSE M, et al. A review of applications in federated learning[J]. Computers and Industrial Engineering, 2020, 149: No.106854. 10.1016/j.cie.2020.106854 |
5 | LI T, SAHU A K, TALWALKAR A, et al. Federated learning: challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3):50-60. 10.1109/msp.2020.2975749 |
6 | NAKAMOTO S. Bitcoin: a peer‑to‑peer electronic cash system[EB/OL]. [2021-07-15].. 10.2139/ssrn.3977007 |
7 | ZHENG Z B, XIE S A, DAI H N, et al. Blockchain challenges and opportunities: a survey[J]. International Journal of Web and Grid Services, 2018, 14(4): 352-375. 10.1504/ijwgs.2018.095647 |
8 | TOYODA K, ZHANG A N. Mechanism design for an incentive‑ aware blockchain‑enabled federated learning platform[C]// Proceedings of the 2019 IEEE International Conference on Big Data. Piscataway: IEEE, 2019: 395-403. 10.1109/bigdata47090.2019.9006344 |
9 | HOU D K, ZHANG J, MAN K L, et al. A systematic literature review of blockchain‑based federated learning: architectures, applications and issues[C]// Proceedings of the 2nd Information Communication Technologies Conference. Piscataway: IEEE, 2021: 302-307. 10.1109/ictc51749.2021.9441499 |
10 | WAHAB O A, MOURAD A, OTROK H, et al. Federated machine learning: survey, multi‑level classification, desirable criteria and future directions in communication and networking systems[J]. IEEE Communications Surveys and Tutorials, 2021, 23(2): 1342-1397. 10.1109/comst.2021.3058573 |
11 | 李凌霄,袁莎,金银玉. 基于区块链的联邦学习技术综述[J]. 计算机应用研究, 2021, 38(11):3222-3230. |
LI L X, YUAN S, JIN Y Y. Review of blockchain‑based federated learning[J]. Application Research of Computers, 2021, 38(11):3222-3230. | |
12 | 邵俊,蔺静茹. 基于区块链的联邦学习应用研究[J]. 中国新通信, 2021, 23(5):124-125. 10.3969/j.issn.1673-4866.2021.05.062 |
SHAO J, LIN J R. Application research of federated learning based on blockchain[J]. China New Telecommunications, 2021, 23(5):124-125. 10.3969/j.issn.1673-4866.2021.05.062 | |
13 | KIM H, PARK J, BENNIS M, et al. Blockchained on‑device federated learning[J]. IEEE Communications Letters, 2020, 24(6):1279-1283. 10.1109/lcomm.2019.2921755 |
14 | QU Y Y, GAO L X, LUAN T H, et al. Decentralized privacy using blockchain‑enabled federated learning in fog computing[J]. IEEE Internet of Things Journal, 2020, 7(6):5071-5083. 10.1109/jiot.2020.2977383 |
15 | POKHREL S R, CHOI J. Federated learning with blockchain for autonomous vehicles: analysis and design challenges[J]. IEEE Transactions on Communications, 2020, 68(8): 4734-4746. 10.1109/tcomm.2020.2990686 |
16 | AWAN S, LI F J, LUO B, et al. Poster: a reliable and accountable privacy‑preserving federated learning framework using the blockchain[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 2561-2563. 10.1145/3319535.3363256 |
17 | HIEU N Q, ANH T T, LUONG N C, et al. Resource management for blockchain‑enabled federated learning: a deep reinforcement learning approach[EB/OL]. (2020-05-01) [2021-08-20].. |
18 | MAJEED U, HONG C S. FLchain: federated learning via MEC‑ enabled blockchain network[C]// Proceedings of the 20th Asia‑ Pacific Network Operations and Management Symposium. Piscataway: IEEE, 2019: 1-4. 10.23919/apnoms.2019.8892848 |
19 | LI Z Y, LIU J, HAO J L, et al. CrowdSFL: a secure crowd computing framework based on blockchain and federated learning[J]. Electronics, 2020, 9(5): No.773. 10.3390/electronics9050773 |
20 | LU Y L, HUANG X H, ZHANG K, et al. Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4298-4311. 10.1109/tvt.2020.2973651 |
21 | KANG J W, XIONG Z H, JIANG C X, et al. Scalable and communication‑efficient decentralized federated edge learning with multi‑blockchain framework[C]// Proceedings of the 2020 International Conference on Blockchain and Trustworthy Systems, CCIS 1267. Singapore: Springer, 2020: 152-165. |
22 | LU Y L, HUANG X H, DAI Y Y, et al. Blockchain and federated learning for privacy‑preserved data sharing in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 4177-4186. 10.1109/tii.2019.2942190 |
23 | REHAMN M H UR, SALAH K, DAMIANI E, et al. Towards blockchain‑based reputation‑aware federated learning[C]// Proceedings of the 2020 IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2020:183-188. 10.1109/infocomwkshps50562.2020.9163027 |
24 | ZHANG W S, LU Q H, YU Q Y, et al. Blockchain‑based federated learning for failure detection in industrial IoT[J]. IEEE Internet of Things Journal, 2021, 8(7):5926-5937. 10.1109/jiot.2020.3032544 |
25 | LU Y L, HUANG X H, ZHANG K, et al. Low‑latency federated learning and blockchain for edge association in digital twin empowered 6G networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 5098-5107. 10.1109/tii.2020.3017668 |
26 | ZHAO Y, ZHAO J, JIANG L S, et al. Privacy‑preserving blockchain‑based federated learning for IoT devices[J]. IEEE Internet of Things Journal, 2021, 8(3): 1817-1829. 10.1109/jiot.2020.3017377 |
27 | MA C, LI J, SHI L, et al. When federated learning meets blockchain: a new distributed learning paradigm[J]. IEEE Computational Intelligence Magazine, 2022, 17(3): 26-33. 10.1109/mci.2022.3180932 |
28 | NAGAR A. Privacy‑preserving blockchain based federated learning with differential data sharing[EB/OL]. (2019-12-10) [2021-08-21].. |
29 | QU Y Y, POKHREL S R, GARG S, et al. A blockchained federated learning framework for cognitive computing in industry 4.0 networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2964-2973. 10.1109/tii.2020.3007817 |
30 | SHAYAN M, FUNG C, YOON C J M, et al. Biscotti: a blockchain system for private and secure federated learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(7): 1513-1525. 10.1109/tpds.2020.3044223 |
31 | BAO X L, SU C, XIONG Y, et al. FLChain: a blockchain for auditable federated learning with trust and incentive[C]// Proceedings of the 5th International Conference on Big Data Computing and Communications. Piscataway: IEEE, 2019: 151-159. 10.1109/bigcom.2019.00030 |
32 | ZHANG K S, HUANG H W, GUO S, et al. Blockchain‑based participant selection for federated learning[C]// Proceedings of the 2020 International Conference on Blockchain and Trustworthy Systems, CCIS 1267. Singapore: Springer, 2020: 112-125. |
33 | CHEN H, ASIF S A, PARK J, et al. Robust blockchained federated learning with model validation and proof‑of‑stake inspired consensus[EB/OL]. (2021-01-09) [2021-08-23].. |
34 | MARTINEZ I, FRANCIS S, HAFID A S. Record and reward federated learning contributions with blockchain[C]// Proceedings of the 2019 International Conference on Cyber‑Enabled Distributed Computing and Knowledge Discovery. Piscataway: IEEE, 2019: 50-57. 10.1109/cyberc.2019.00018 |
35 | 任涛,金若辰,罗咏梅. 融合区块链与联邦学习的网络入侵检测算法[J]. 信息网络安全, 2021, 21(7):27-34. 10.3969/j.issn.1671-1122.2021.07.004 |
REN T, JIN R C, LUO Y M. Network intrusion detection algorithm integrating blockchain and federated learning[J]. Netinfo Security, 2021, 21(7):27-34. 10.3969/j.issn.1671-1122.2021.07.004 | |
36 | 冯涛,焦滢,方君丽,等. 基于联盟区块链的医疗健康数据安全模型[J]. 计算机科学, 2020, 47(4): 305-311. 10.11896/jsjkx.190300087 |
FENG T, JIAO Y, FANG J L, et al. Medical health data security model based on alliance blockchain[J]. Computer Science, 2020, 47(4): 305-311. 10.11896/jsjkx.190300087 | |
37 | KUMAR S, DUTTA S, CHATTURVEDI S, et al. Strategies for enhancing training and privacy in blockchain enabled federated learning[C]// Proceedings of the IEEE 6th International Conference on Multimedia Big Data. Piscataway: IEEE, 2020: 333-340. 10.1109/bigmm50055.2020.00058 |
38 | 中国石油大学(华东. 一种基于区块链和联邦学习的物联网设备故障检测方法: 202011087722.7[P]. 2021-01-05. 10.1109/jiot.2020.3032544 |
China University of Petroleum (East China). A failure detection method for Internet of things device based on blockchain and federated learning: 202011087722.7[P]. 2021-01-05. 10.1109/jiot.2020.3032544 | |
39 | 代玥玥,张科,张彦. 区块链赋能6G[J]. 物联网学报, 2020, 4(1):111-120. 10.11959/j.issn.2096-3750.2020.00154 |
DAI Y Y, ZHANG K, ZHANG Y. Blockchain empowered 6G[J]. Chinese Journal on Internet of Things, 2020, 4(1): 111-120. 10.11959/j.issn.2096-3750.2020.00154 | |
40 | PASSERAT‑PALMBACH J, FARNAN T, MILLER R, et al. A blockchain‑orchestrated federated learning architecture for healthcare consortia[EB/OL]. (2019-10-12) [2021-08-24].. |
41 | RIFAI O EL, BIOTTEAU M, DE BOISSEZON X, et al. Blockchain‑based federated learning in medicine[C]// Proceedings of the 2020 International Conference on Artificial Intelligence in Medicine, LNCS 12299. Cham: Springer, 2020: 214-224. |
42 | POLAP D, SRIVASTAVA G, JOLFAEI A, et al. Blockchain technology and neural networks for the Internet of Medical Things[C]// Proceedings of the 2020 IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2020: 508-513. 10.1109/infocomwkshps50562.2020.9162735 |
43 | RAHMAN M A, HOSSAIN M S, ISLAM M S, et al. Secure and provenance enhanced Internet of health things framework: a blockchain managed federated learning approach[J]. IEEE Access, 2020, 8: 205071-205087. 10.1109/access.2020.3037474 |
44 | AICH S, SINAI N K, KUMAR S, et al. Protecting personal healthcare record using blockchain & federated learning technologies[C]// Proceedings of the 23rd International Conference on Advanced Communication Technology. Piscataway: IEEE, 2021: 109-112. 10.23919/icact51234.2021.9370566 |
45 | KUMAR R, KHAN A A, KUMAR J, et al. Blockchain‑federated‑ learning and deep learning models for COVID-19 detection using CT imaging[J]. IEEE Sensors Journal, 2021, 21(14): 16301-16314. 10.1109/jsen.2021.3076767 |
46 | 邢丹,徐琦,姚俊明. 边缘计算环境下基于区块链和联邦学习的医疗健康数据共享模型[J]. 医学信息学杂志, 2021, 42(2):33-37. 10.3969/j.issn.1673-6036.2021.02.007 |
XING D, XU Q, YAO J M. Medical and health data sharing model based on blockchain and federated learning in the edge computing environment[J]. Journal of Medical Informatics, 2021, 42(2): 33-37. 10.3969/j.issn.1673-6036.2021.02.007 | |
47 | 李铮. 一种支持隐私与权益保护的数据联合利用系统方案[J]. 信息与电脑, 2020, 32(14): 4-7. 10.3969/j.issn.1003-9767.2020.14.002 |
LI Z. A scheme of data joint utilization system supporting privacy and rights protection[J]. China Computer & Communication, 2020, 32(14): 4-7. 10.3969/j.issn.1003-9767.2020.14.002 | |
48 | CHAI H Y, LENG S P, CHEN Y J, et al. A hierarchical blockchain‑enabled federated learning algorithm for knowledge sharing in internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 3975-3986. 10.1109/tits.2020.3002712 |
49 | CUI L Z, SU X X, MING Z X, et al. CREAT: blockchain‑ assisted compression algorithm of federated learning for content caching in edge computing[J]. IEEE Internet of Things Journal, 2022, 9(16): 14151-14161. 10.1109/jiot.2020.3014370 |
50 | HALIM S M, KHAN L, THURAISINGHAM B. Next‑location prediction using federated learning on a blockchain[C]// Proceedings of the IEEE 2nd International Conference on Cognitive Machine Intelligence. Piscataway: IEEE, 2020: 244-250. 10.1109/cogmi50398.2020.00038 |
51 | WANG Y T, SU Z, ZHANG N, et al. Learning in the air: secure federated learning for UAV‑assisted crowdsensing[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1055-1069. 10.1109/tnse.2020.3014385 |
52 | POKHREL S R. Federated learning meets blockchain at 6G edge: a drone‑assisted networking for disaster response[C]// Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond. New York: ACM, 2020: 49-54. 10.1145/3414045.3415949 |
53 | WANG Y C, TIAN Y Y, YIN X Y, et al. A trusted recommendation scheme for privacy protection based on federated learning[J]. CCF Transactions on Networking, 2020, 3(3/4):218-228. 10.1007/s42045-020-00045-8 |
[1] | Tingwei CHEN, Jiacheng ZHANG, Junlu WANG. Random validation blockchain construction for federated learning [J]. Journal of Computer Applications, 2024, 44(9): 2770-2776. |
[2] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
[3] | Xiaoling SUN, Danhui WANG, Shanshan LI. Dynamic ciphertext sorting and retrieval scheme based on blockchain [J]. Journal of Computer Applications, 2024, 44(8): 2500-2505. |
[4] | Baoyan SONG, Junxiang DING, Junlu WANG, Haolin ZHANG. Consortium blockchain modification method based on chameleon hash and verifiable secret sharing [J]. Journal of Computer Applications, 2024, 44(7): 2087-2092. |
[5] | He HUANG, Yu JIN. Cloud data auditing scheme based on voting and Ethereum smart contracts [J]. Journal of Computer Applications, 2024, 44(7): 2093-2101. |
[6] | Jiao LI, Xiushan ZHANG, Yuanhang NING. Blockchain sharding method for reducing cross-shard transaction proportion [J]. Journal of Computer Applications, 2024, 44(6): 1889-1896. |
[7] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[8] | Peiqian LIU, Shuilian WANG, Zihao SHEN, Hui WANG. Location privacy protection algorithm based on trajectory perturbation and road network matching [J]. Journal of Computer Applications, 2024, 44(5): 1546-1554. |
[9] | Lipeng ZHAO, Bing GUO. Blockchain consensus improvement algorithm based on BDLS [J]. Journal of Computer Applications, 2024, 44(4): 1139-1147. |
[10] | Meihong CHEN, Lingyun YUAN, Tong XIA. Data classified and graded access control model based on master-slave multi-chain [J]. Journal of Computer Applications, 2024, 44(4): 1148-1157. |
[11] | Gaimei GAO, Jin ZHANG, Chunxia LIU, Weichao DANG, Shangwang BAI. Privacy protection scheme for crowdsourced testing tasks based on blockchain and CP-ABE policy hiding [J]. Journal of Computer Applications, 2024, 44(3): 811-818. |
[12] | Haifeng MA, Yuxia LI, Qingshui XUE, Jiahai YANG, Yongfu GAO. Attribute-based encryption scheme for blockchain privacy protection [J]. Journal of Computer Applications, 2024, 44(2): 485-489. |
[13] | Yifan WANG, Shaofu LIN, Yunjiang LI. Highway free-flow tolling method based on blockchain and zero-knowledge proof [J]. Journal of Computer Applications, 2024, 44(12): 3741-3750. |
[14] | Rui GAO, Xuebin CHEN, Zucuan ZHANG. Dynamic social network privacy publishing method for partial graph updating [J]. Journal of Computer Applications, 2024, 44(12): 3831-3838. |
[15] | Ziqian CHEN, Kedi NIU, Zhongyuan YAO, Xueming SI. Review of blockchain lightweight technology applied to internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3688-3698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||