[1] 魏钰. 传播学视域下弹幕文化的现状及前景分析——以大学生群体为例[J]. 传媒, 2017(15):52-55.(WEI Y. Analysis of the status quo and prospects of barrage culture from the perspective of communication science:taking college students as an example[J]. Media, 2017(15):52-55.) [2] 邓扬, 张晨曦, 李江峰. 基于弹幕情感分析的视频片段推荐模型[J]. 计算机应用, 2017, 37(4):1065-1070, 1134.(DENG Y, ZHANG C X, LI J F. Video shot recommendation model based on emotion analysis using time-sync comments[J]. Journal of Computer Applications, 2017, 37(4):1065-1070, 1134.) [3] 洪庆, 王思尧, 赵钦佩, 等. 基于弹幕情感分析和聚类算法的视频用户群体分类[J]. 计算机工程与科学, 2018, 40(6):1125-1139.(HONG Q, WANG S Y, ZHAO Q P, et al. Video user group classification based on barrage comments sentiment analysis and clustering algorithm[J]. Computer Engineering and Science, 2018, 40(6):1125-1139.) [4] 高茂庭, 杨涛. 融合协同过滤和主题模型的弹幕视频推荐算法[J]. 计算机应用研究, 2020, 37(12):3565-3568, 3577.(GAO M T, YANG T. Danmaku video recommendation combining collaborative filtering and topic model[J]. Application Research of Computers, 2020, 37(12):3565-3568, 3577.) [5] 段炼. 面向弹幕文本的情感分析研究[D]. 重庆:重庆邮电大学, 2019:24-30.(DUAN L. Research on sentiment analysis for bullet-screen text[D]. Chongqing:Chongqing University of Posts and Telecommunications, 2019:24-30.) [6] 马梦曦. 基于弹幕文本挖掘的情感极性分析研究[D]. 武汉:武汉理工大学, 2019:33-47.(MA M X. Research on emotional polarity analysis based on text mining of barrages[D]. Wuhan:Wuhan University of Technology, 2019:33-47.) [7] 庄须强. 基于深度学习的弹幕评论情感分析研究[D]. 济南:山东师范大学, 2018:14-24.(ZHUANG X Q. Research on sentiment analysis of barrage comments based on deep learning[D]. Jinan:Shandong Normal University, 2018:14-24.) [8] 王振振, 何明, 杜永萍. 基于LDA主题模型的文本相似度计算[J]. 计算机科学, 2013, 40(12):229-232.(WANG Z Z, HE M, DU Y P. Text similarity computing based on topic model LDA[J]. Computer Science, 2013, 40(12):229-232.) [9] 张航. 基于LDA主题模型的电影推荐算法研究[D]. 杭州:中国计量大学, 2018:28-38. (ZHANG H. Research on movie recommendation algorithm based on LDA topic model[D]. Hangzhou:China Jiliang University, 2018:28-38.) [10] 高娜, 杨明. 嵌入LDA主题模型的协同过滤推荐算法[J]. 计算机科学, 2016, 43(3):57-61, 79.(GAO N, YANG M. Topic model embedded in collaborative filtering recommendation algorithm[J]. Computer Science, 2016, 43(3):57-61, 79.) [11] 孟仕林, 赵蕴龙, 关东海, 等. 融合情感与语义信息的情感分析方法[J]. 计算机应用, 2019, 39(7):1931-1935.(MENG S L, ZHAO Y L, GUAN D H, et al. Sentiment analysis method combining sentiment and semantic information[J]. Journal of Computer Applications, 2019, 39(7):1931-1935.) [12] 郑飏飏, 徐健, 肖卓. 情感分析及可视化方法在网络视频弹幕数据分析中的应用[J]. 现代图书情报技术, 2015(11):82-90. (ZHENG Y Y, XU J, XIAO Z. Utilization of sentiment analysis and visualization in online video bullet-screen comments[J]. New Technology of Library and Information Service, 2015(11):82-90.) [13] WU Q F, SANG Y S, SHAN Z, et al. Danmaku vs. forum comments:understanding user participation and knowledge sharing in online videos[C]//Proceedings of the 2018 ACM Conference on Supporting Groupwork. New York:ACM, 2018:209-218. [14] YADOLLAHI A, SHAHRAKI A G, ZAIANE O R. Current state of text sentiment analysis from opinion to emotion mining[J]. ACM Computing Surveys, 2017, 50(2):No. 25. [15] YUE L, CHEN W T, LI X, et al. A survey of sentiment analysis in social media[J]. Knowledge and Information Systems, 2019, 60(2):617-663. [16] SAILUNAZ K, ALHAJJ R. Emotion and sentiment analysis from Twitter text[J]. Journal of Computational Science, 2019, 36:No. 101003. [17] 高茂庭, 王吉. 融合社交关系与时间因素的主题模型推荐算法[J]. 计算机工程, 2020, 46(3):66-72.(GAO M T, WANG J. Topic model recommendation algorithm combining social relationship and time factors[J]. Computer Engineering, 2020, 46(3):66-72.) [18] 赵楠, 皮文超, 许长桥. 一种面向多维特征分析过滤的视频推荐算法[J]. 计算机科学, 2020, 47(4):103-107.(ZHAO N, PI W C, XU C Q. Video recommendation algorithm for multidimensional feature analysis and filtering[J]. Computer Science, 2020, 47(4):103-107.) [19] 王娜, 何晓明, 刘志强, 等. 一种基于用户播放行为序列的个性化视频推荐策略[J]. 计算机学报, 2020, 43(1):123-135. (WANG N, HE X M, LIU Z Q, et al. Personalized video recommendation strategy based on user's playback behavior sequence[J]. Chinese Journal of Computers, 2020, 43(1):123-135.) |