[1] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:993-1022. [2] ANDRIEU C, de FREITAS N, DOUCET A, et al. An introduction to MCMC for machine learning[J]. Machine Learning, 2003, 50(1/2):5-43. [3] GRIFFITHS T L, STEYVERS M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(S1):5228-5235. [4] TEH Y W, NEWMAN D, WELLING M. A collapsed variational Bayesian inference algorithm for latent Dirichlet allocation[C]//Proceedings of the 2006 Twentieth Annual Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2006:1353-1360. [5] CANINI K R, SHI L, GRIFFITHS T L. Online inference of topics with latent Dirichlet allocation[EB/OL].[2017-10-16]. http://proceedings.mlr.press/v5/canini09a/canini09a.pdf. [6] PATTERSON S, TEH Y W. Stochastic gradient Riemannian Langevin dynamics on the probability simplex[C]//Proceedings of the 201326th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2013:3102-3110. [7] HOFFMAN M D, BLEI D M, BACH F R. Online learning for latent Dirichlet allocation[C]//Proceedings of the 201023rd International Conference on Neural Information Processing Systemss. New York:Curran Associates Inc., 2010:856-864. [8] HOFFMAN M D, BLEI D M, WANG C, et al. Stochastic variational inference[J]. Journal of Machine Learning Research, 2013, 14(1):1303-1347. [9] SONG W Z, YANG B, ZHAO X H, et al. A fast and scalable supervised topic modelusing stochastic variational inference and MapReduce[C]//Proceedings of the 2016 IEEE International Conference on Network Infrastructure and Digital Content. Piscataway, NJ:IEEE, 2016:94-98. [10] GOPALAN P K, BLEI D M. Efficient discovery of overlapping communities in massive networks[J]. Proceedings of the National Academy of Sciences, 2013, 110(36):14534-14539. [11] FAN K, ZHANG Y, HENAO R, et al. Triply stochastic variational inference for non-linear beta process factor analysis[C]//Proceedings of the 2016 IEEE 16th International Conference on Data Mining. Piscataway, NJ:IEEE, 2017:121-130. [12] SENANAYAKE R, O'CALLAGHAN S, RAMOS F. Learning highly dynamic environments with stochastic variational inference[EB/OL].[2017-10-16]. DOI:10.1109/ICRA.2017.7989294. [13] NESTEROV Y. Primal-dual subgradient methods for convex problems[J]. Mathematical Programming, 2009, 120(1):221-259. [14] SCHMIDT M, ROUX N L, BACH F. Minimizing finite sums with the stochastic average gradient[J]. Mathematical Programming, 2017, 162(1/2):83-112. [15] JOHNSON R, ZHANG T. Accelerating stochastic gradient descent using predictive variance reduction[C]//Proceedings of the 201326th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc, 2013:315-323. [16] XIAO L, ZHANG T. A proximal stochastic gradient method with progressive variance reduction[J]. SIAM Journal on Optimization, 2014, 24(4):2057-2075. [17] 朱小辉,陶卿,邵言剑,等.一种减小方差求解非光滑问题的随机优化算法[J].软件学报,2015,26(11):2752-2761.(ZHU X H, TAO Q, SHAO Y J, et al. Stochastic optimization algorithm with variance reduction for solving non-smooth problems[J]. Journal of Software, 2015, 26(11):2752-2761.) [18] REDDI S J, HEFNY A, SRA S, et al. Stochastic variance reduction for nonconvex optimization[EB/OL].[2017-10-16]. http://proceedings.mlr.press/v48/reddi16.pdf. [19] OUYANG J H, LU Y, LI X M. Momentum online LDA for large-scale datasets[J]. Frontiers in Artificial Intelligence & Applications, 2014, 263:1075-1076. [20] WANG C, CHEN X, SMOLA A, et al. Variance reduction for stochastic gradient optimization[C]//Proceedings of the 201326th International Conference on Neural Information Processing Systems. New York:Curran Associates Inc., 2013:181-189. [21] RANGANATH R, WANG C, BLEI D M, et al. An adaptive learning rate for stochastic variational inference[EB/OL].[2017-10-16]. http://proceedings.mlr.press/v28/ranganath13.pdf. |