Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (2): 552-559.DOI: 10.11772/j.issn.1001-9081.2022010093
• Multimedia computing and computer simulation • Previous Articles
Guihui CHEN1, Jinyu LIN1(), Yuehua LI2, Zhongbing LI1, Yuli WEI1, Kai LU1
Received:
2022-01-25
Revised:
2022-04-13
Accepted:
2022-04-18
Online:
2022-04-21
Published:
2023-02-10
Contact:
Jinyu LIN
About author:
CHEN Guihui, born in 1971, M. S., professor. His research interests include digital image processing.Supported by:
谌贵辉1, 林瑾瑜1(), 李跃华2, 李忠兵1, 魏钰力1, 卢凯1
通讯作者:
林瑾瑜
作者简介:
谌贵辉(1971—),男,四川成都人,教授,硕士,主要研究方向:数字图像处理基金资助:
CLC Number:
Guihui CHEN, Jinyu LIN, Yuehua LI, Zhongbing LI, Yuli WEI, Kai LU. Multi-stage low-illuminance image enhancement network based on attention mechanism[J]. Journal of Computer Applications, 2023, 43(2): 552-559.
谌贵辉, 林瑾瑜, 李跃华, 李忠兵, 魏钰力, 卢凯. 注意力机制下的多阶段低照度图像增强网络[J]. 《计算机应用》唯一官方网站, 2023, 43(2): 552-559.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022010093
网络 | PSNR/dB | SSIM |
---|---|---|
UNet网络 | 11.98 | 0.30 |
CAU网络 | 13.52 | 0.35 |
Tab.1 PSNR and SSIM values of UNet and CAU networks
网络 | PSNR/dB | SSIM |
---|---|---|
UNet网络 | 11.98 | 0.30 |
CAU网络 | 13.52 | 0.35 |
网络 | PSNR/dB | SSIM |
---|---|---|
SENet网络 | 12.63 | 0.31 |
CBAM网络 | 13.33 | 0.34 |
CA网络 | 13.52 | 0.35 |
Tab.2 PSNR and SSIM values of multi-scale fusion networks with different attention mechanisms
网络 | PSNR/dB | SSIM |
---|---|---|
SENet网络 | 12.63 | 0.31 |
CBAM网络 | 13.33 | 0.34 |
CA网络 | 13.52 | 0.35 |
网络 | PSNR/dB | SSIM | 参数量/106 |
---|---|---|---|
单阶段CAU网络 | 13.52 | 0.35 | 34.5 |
两阶段CAU网络 | 18.46 | 0.58 | 69.3 |
三阶段CAU网络 | 21.56 | 0.63 | 103.7 |
四阶段CAU网络 | 135.6 |
Tab.3 PSNR and SSIM values after CAU network processing and number of network parameters at different stages
网络 | PSNR/dB | SSIM | 参数量/106 |
---|---|---|---|
单阶段CAU网络 | 13.52 | 0.35 | 34.5 |
两阶段CAU网络 | 18.46 | 0.58 | 69.3 |
三阶段CAU网络 | 21.56 | 0.63 | 103.7 |
四阶段CAU网络 | 135.6 |
方法 | PSNR/dB | SSIM | 参数量/106 |
---|---|---|---|
HE | 16.86 | 0.49 | |
MSR | 17.10 | 0.54 | |
RetinexNet | 16.72 | 0.43 | 0.87 |
DSLR | 19.43 | 0.59 | 23.40 |
MMCA-Net | 21.56 | 0.63 | 103.70 |
Tab.4 PSNR and SSIM values and number of network parameters of different methods
方法 | PSNR/dB | SSIM | 参数量/106 |
---|---|---|---|
HE | 16.86 | 0.49 | |
MSR | 17.10 | 0.54 | |
RetinexNet | 16.72 | 0.43 | 0.87 |
DSLR | 19.43 | 0.59 | 23.40 |
MMCA-Net | 21.56 | 0.63 | 103.70 |
1 | 刘佳敏,何宁,尹晓杰. 基于Retinex-UNet算法的低照度图像增强[J]. 计算机工程与应用, 2020, 56(22): 211-216. 10.3778/j.issn.1002-8331.1910-0239 |
LIU J M, HE N, YIN X J. Low illumination image enhancement based on RetiNex-UNet algorithm[J]. Computer Engineering and Applications, 2020, 56(22): 211-216. 10.3778/j.issn.1002-8331.1910-0239 | |
2 | LAND E H, McCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61 (1): 1-11. 10.1364/josa.61.000001 |
3 | JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462. 10.1109/83.557356 |
4 | RAHMAN Z, OBSON D J, WOODELL G A. Multiscale retinex for color rendition and dynamic range compression[C]// Proceedings of the SPIE 2847, Applications of Digital Image Processing XIX. Bellingham, WA: SPIE, 1996: No.258224. 10.1117/12.258224 |
5 | 陈灿灿. 基于Retinex理论的低照度彩色图像增强算法研究[D]. 沈阳:沈阳航空航天大学, 2018: 6-45. |
CHEN C C. Low illumination color image enhancement algorithm research based on retinex theory[D]. Shenyang: Shenyang Aerospace University, 2018:6-45. | |
6 | 卢玮,高涛,王翠翠,等. Retinex理论下基于融合思想的低照度彩色图像增强算法[J]. 科学技术与工程, 2019, 19(13): 151-157. 10.3969/j.issn.1671-1815.2019.13.024 |
LU W, GAO T, WANG C C, et al. Low illumination color image enhancement algorithm based on fusion idea under Retinex theory[J]. Science Technology and Engineering, 2019, 19 (13): 151-157. 10.3969/j.issn.1671-1815.2019.13.024 | |
7 | ABDULLAH-ALWADUD M, KABIR M H, AKBER DEWAN M A, et al. A dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(2): 593-600. 10.1109/tce.2007.381734 |
8 | IBRAHIM H, KONG N S P. Brightness preserving dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(4): 1752-1758. 10.1109/tce.2007.4429280 |
9 | LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662. 10.1016/j.patcog.2016.06.008 |
10 | TAO L, ZHU C, XIANG G Q, et al. LLCNN: a convolutional neural network for low-light image enhancement[C]// Proceedings of the 2017 IEEE Visual Communications and Image Processing. Piscataway: IEEE, 2017: 1-4. 10.1109/vcip.2017.8305143 |
11 | WEI C, WANG W J, YANG W H, et al. Deep Retinex decomposition for low-light enhancement[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.155. 10.48550/arXiv.1808.04560 |
12 | WANG W J, WEI C, YANG W H, et al. GLADNet: low-light enhancement network with global awareness[C]// Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2018:751-755. 10.1109/fg.2018.00118 |
13 | JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349. 10.1109/tip.2021.3051462 |
14 | LIM S, KIM W. DSLR: deep stacked Laplacian restorer for low-light image enhancement[J]. IEEE Transactions on Multimedia, 2021, 23: 4272-4284. 10.1109/tmm.2020.3039361 |
15 | ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14816-14826. 10.1109/cvpr46437.2021.01458 |
16 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
17 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. 10.1109/cvpr46437.2021.01350 |
18 | JIE H, LI S, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. 10.1109/tpami.2019.2913372 |
19 | WOO S A, PARK J B, LEE J C. CBAM: convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
20 | DIEDERIK K, JIMMY B. Adam: a method for stochastic optimization[EB/OL]. (2017-01-30) [2021-12-03].. |
21 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. 10.1109/tip.2003.819861 |
22 | CHENG H D, SHI X J. A simple and effective histogram equalization approach to image enhancement[J]. Digital Signal Processing, 2004, 14(2):158-170. 10.1016/j.dsp.2003.07.002 |
23 | CAI J R, GU S H, ZHANG L. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 2018, 27(4): 2049-2062. 10.1109/tip.2018.2794218 |
[1] | Cong LIU, Genshun WAN, Jianqing GAO, Zhonghua FU. End-to-end speech recognition method based on prosodic features [J]. Journal of Computer Applications, 2023, 43(2): 380-384. |
[2] | Gang CHEN, Yongwei LIAO, Zhenguo YANG, Wenying LIU. Image inpainting algorithm of multi-scale generative adversarial network based on multi-feature fusion [J]. Journal of Computer Applications, 2023, 43(2): 536-544. |
[3] | Ming XU, Linhao LI, Qiaoling QI, Liqin WANG. Abductive reasoning model based on attention balance list [J]. Journal of Computer Applications, 2023, 43(2): 349-355. |
[4] | Xuesen MA, Xuemei XU, Gonghui JIANG, Yan QIAO, Tianbao ZHOU. Hybrid adaptive particle swarm optimization algorithm for workflow scheduling [J]. Journal of Computer Applications, 2023, 43(2): 474-483. |
[5] | Xiaomeng SHAO, Meng ZHANG. Temporal convolutional knowledge tracing model with attention mechanism [J]. Journal of Computer Applications, 2023, 43(2): 343-348. |
[6] | Ping WANG, Nan CHEN, Lei LU. Fall detection algorithm based on scene prior and attention guidance [J]. Journal of Computer Applications, 2023, 43(2): 529-535. |
[7] | Yaling XUN, Linqing WANG, Jianghui CAI, Haifeng YANG. Partial periodic pattern incremental mining of time series data based on multi-scale [J]. Journal of Computer Applications, 2023, 43(2): 391-397. |
[8] | Zihao GUO, Lele DONG, Zhijian QU. Arthropod object detection method based on improved Faster RCNN [J]. Journal of Computer Applications, 2023, 43(1): 88-97. |
[9] | Kewen LI, Jiantao YANG, Zongchao HUANG. Improved YOLOv3 target detection based on boundary limit point features [J]. Journal of Computer Applications, 2023, 43(1): 81-87. |
[10] | Zhijun SHEN, Lina MU, Jing GAO, Yuanhang SHI, Zhiqiang LIU. Review of fine-grained image categorization [J]. Journal of Computer Applications, 2023, 43(1): 51-60. |
[11] | Renbiao WU, Zhenchi ZHANG, Yunfei JIA, Han QIAO. Adaptive scheduling strategy based on deadline under cloud platform [J]. Journal of Computer Applications, 2023, 43(1): 176-184. |
[12] | Zeqiang SUN, Bingcai CHEN, Xiaobo CUI, Lei WANG, Yanuo LU. Strip steel surface defect detection by YOLOv5 algorithm fusing frequency domain attention mechanism and decoupled head [J]. Journal of Computer Applications, 2023, 43(1): 242-249. |
[13] | Honggang YANG, Jiejie CHEN, Mengfei XU. Bilinear involution neural network for image classification of fundus diseases [J]. Journal of Computer Applications, 2023, 43(1): 259-264. |
[14] | Yuchao LYU, Xi JIANG, Yinghao XU, Xijun ZHU. Improved brachial plexus nerve segmentation method based on multi-scale feature fusion [J]. Journal of Computer Applications, 2023, 43(1): 273-279. |
[15] | Jun ZHANG, Pengli WU, Lukui SHI, Jin SHI, Bin PAN. Deep learning model for multi-station temperature prediction combined with MOD11A1 and surface meteorological station data [J]. Journal of Computer Applications, 2023, 43(1): 321-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||