Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (3): 972-977.DOI: 10.11772/j.issn.1001-9081.2022010131
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles Next Articles
Jinyue LIU(), Huiyu LI, Xiaohui JIA, Jiarui LI
Received:
2022-02-08
Revised:
2022-03-16
Accepted:
2022-03-21
Online:
2022-04-21
Published:
2023-03-10
Contact:
Jinyue LIU
About author:
LI Huiyu, born in 1994, M. S. candidate. His research interests include force tactile perception, intelligent detection.Supported by:
通讯作者:
刘今越
作者简介:
刘今越(1977—),男,河北唐山人,教授,博士,主要研究方向:机器人环境感知、智能检测与控制基金资助:
CLC Number:
Jinyue LIU, Huiyu LI, Xiaohui JIA, Jiarui LI. Dynamic gait recognition method based on human model constraints[J]. Journal of Computer Applications, 2023, 43(3): 972-977.
刘今越, 李慧宇, 贾晓辉, 李佳蕊. 基于人体模型约束的步态动态识别方法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 972-977.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022010131
步态相位 | 判断条件 |
---|---|
足跟触地 | |
足弓触地 | |
足平放 | |
足跟离地 | |
足前支撑 | |
摆动相 |
Tab. 1 Gait phase judgment conditions
步态相位 | 判断条件 |
---|---|
足跟触地 | |
足弓触地 | |
足平放 | |
足跟离地 | |
足前支撑 | |
摆动相 |
名称 | 类型 | 核大小及个数 | 步长 | 特征图与神经元 |
---|---|---|---|---|
Input | 输入层 | — | — | 1个34×16 |
C1 | 卷积层 | 6个5×5核 | 1 | 6个30×12 |
S2 | 降采样层 | 1个2×2核 | 2 | 6个15×6 |
C3 | 卷积层 | 16个5×5核 | 1 | 16个11×2 |
S4 | 降采样层 | 1个2×2核 | 1 | 16个6×2 |
C5 | 卷积层 | 120个1×1核 | 1 | 120个6×2 |
F6 | 全连接层 | 1×1核 | 1 | — |
Output | 输出层 | 1×1核 | 1 | — |
Tab. 2 Parameters of CNN
名称 | 类型 | 核大小及个数 | 步长 | 特征图与神经元 |
---|---|---|---|---|
Input | 输入层 | — | — | 1个34×16 |
C1 | 卷积层 | 6个5×5核 | 1 | 6个30×12 |
S2 | 降采样层 | 1个2×2核 | 2 | 6个15×6 |
C3 | 卷积层 | 16个5×5核 | 1 | 16个11×2 |
S4 | 降采样层 | 1个2×2核 | 1 | 16个6×2 |
C5 | 卷积层 | 120个1×1核 | 1 | 120个6×2 |
F6 | 全连接层 | 1×1核 | 1 | — |
Output | 输出层 | 1×1核 | 1 | — |
步态识别数据 | 行走 | 上楼梯 | 下楼梯 |
---|---|---|---|
足部运动数据图像 | 94.58 | 93.21 | 94.64 |
足底压力图像 | 83.24 | 81.02 | 78.61 |
Tab. 3 Gait recognition accuracy of different data
步态识别数据 | 行走 | 上楼梯 | 下楼梯 |
---|---|---|---|
足部运动数据图像 | 94.58 | 93.21 | 94.64 |
足底压力图像 | 83.24 | 81.02 | 78.61 |
1 | DING S, OUYANG X P, LIU T, et al. Gait event detection of a lower extremity exoskeleton robot by an intelligent IMU[J]. IEEE Sensors Journal, 2018, 18(23):9728-9735. 10.1109/jsen.2018.2871328 |
2 | DEMROZI F, BACCHIN R, TAMBURIN S, et al. Toward a wearable system for predicting the freezing of gait in people affected by Parkinson's disease[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(9):2444-2451. 10.1109/jbhi.2019.2952618 |
3 | ZHANG B Q, WANG S A, ZHU H Q. A user-adaptive online learning approach of real-time gait phase detection for walking assistance[C]// Proceedings of the 2019 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2019:1127-1132. 10.1109/ssci44817.2019.9003107 |
4 | LI H Z, ZHANG X D, LU Z F, et al. RP-based voluntary movement intention detection of lower limb using CNN[C]// Proceedings of the 10th IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Piscataway: IEEE, 2020:349-353. 10.1109/cyber50695.2020.9279117 |
5 | PARDOEL S, SHALIN G, NANTEL J, et al. Early detection of freezing of gait during walking using inertial measurement unit and plantar pressure distribution data[J]. Sensors, 2021, 21(6): No.2246. 10.3390/s21062246 |
6 | ZHOU M L, REN C H, LIU H. An improved sEMG signal processing method for lower limb motion recognition[C]// Proceedings of the IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE, 2019:21-25. 10.1109/imcec46724.2019.8984187 |
7 | RYU J, LEE BH, KIM DH. sEMG signal-based lower limb human motion detection using a top and slope feature extraction algorithm[J]. IEEE Signal Processing Letters, 2017, 24(7):929-932. 10.1109/lsp.2016.2636320 |
8 | CHAKRABORTY S, NANDY A. An unsupervised approach for gait phase detection[C]// Proceedings of the 4th International Conference on Computational Intelligence and Networks. Piscataway: IEEE, 2020:1-5. 10.1109/cine48825.2020.234396 |
9 | WANG L, LI Y J, XIONG F, et al. Gait recognition using optical motion capture: a decision fusion based method[J]. Sensors, 2021, 21(10): No.3496. 10.3390/s21103496 |
10 | KOLAGHASSI R, AL-HARES M K, SIRLANTZIS K. Systematic review of intelligent algorithms in gait analysis and prediction for lower limb robotic systems[J]. IEEE Access, 2021, 9:113788-113812. 10.1109/access.2021.3104464 |
11 | WEIGAND F, ZEISS J, GRIMMER M, et al. A novel approach for gait phase estimation for different locomotion modes using kinematic shank information[J]. IFAC-PapersOnLine, 2020, 53(2):8697-8703. 10.1016/j.ifacol.2020.12.287 |
12 | SU B B, SMITH C, FAREWIK E G. Gait phase recognition using deep convolutional neural network with inertial measurement units[J]. Biosensors, 2020, 10(9): No.109. 10.3390/bios10090109 |
13 | 赵飞. 基于连续足底分布式压力测量的步态分析[D].哈尔滨:哈尔滨工业大学, 2020:7-11. |
ZHAO F. Gait analysis based on continuous plantar distributed pressure measurements[D]. Harbin: Harbin Institute of Technology, 2020:7-11. | |
14 | 郭士杰,肖杰,刘今越,等. 电容阵列柔性压力传感器设计与分析[J].仪器仪表学报, 2018, 39(7):49-55. |
GUO S J, XIAO J, LIU J Y, et al. Capacitor array flexible pressure sensor design and analysis[J]. Chinese Journal of Scientific Instrument, 2018, 39(7):49-55. | |
15 | PAPAVASILEIOU I, ZHANG W L, HAN S. Real-time data-driven gait phase detection using ground contact force measurements: algorithms, platform design and performance[J]. Smart Health, 2017, 1/2 :34-49. |
16 | 钟慧敏,黄萍. 不同体质量指数正常人的足底压力特征[J]. 中国组织工程研究, 2017, 21(23):3730-3735. 10.3969/j.issn.2095-4344.2017.23.021 |
ZHONG H M, HUANG P. Plantar pressure of normal people with different body mass index[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(23):3730-3735. 10.3969/j.issn.2095-4344.2017.23.021 | |
17 | FOXLIN E. Pedestrian tracking with shoe-mounted inertial sensors[J]. IEEE Computer Graphics and Applications, 2005, 25(6):38-46. 10.1109/mcg.2005.140 |
18 | 邓平,赵荣鑫,朱飞翔. 一种基于人体运动状态识别的行人航迹推算方法[J]. 中国惯性技术学报, 2021, 29(1):16-22. |
DENG P, ZHAO R X, ZHU F X. A PDR algorithm based on human motion recognition[J]. Journal of Chinese Inertial Technology, 2021, 29(1): 16-22. |
[1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[2] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[3] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[4] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[5] | Ruihua LIU, Zihe HAO, Yangyang ZOU. Gait recognition algorithm based on multi-layer refined feature fusion [J]. Journal of Computer Applications, 2024, 44(7): 2250-2257. |
[6] | Xiaolu WANG, Wangfei QIAN. Gait recognition method based on two-branch convolutional network [J]. Journal of Computer Applications, 2024, 44(6): 1965-1971. |
[7] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[8] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[9] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[10] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. |
[11] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[12] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
[13] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
[14] | Ruifeng HOU, Pengcheng ZHANG, Liyuan ZHANG, Zhiguo GUI, Yi LIU, Haowen ZHANG, Shubin WANG. Iterative denoising network based on total variation regular term expansion [J]. Journal of Computer Applications, 2024, 44(3): 916-921. |
[15] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||