Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (5): 1584-1595.DOI: 10.11772/j.issn.1001-9081.2022040530
• Multimedia computing and computer simulation • Previous Articles Next Articles
Liyao FU1, Mengxiao YIN1,2, Feng YANG1,2()
Received:
2022-04-18
Revised:
2022-07-02
Accepted:
2022-07-04
Online:
2022-07-26
Published:
2023-05-10
Contact:
Feng YANG
About author:
FU Liyao, born in 1998, M. S. candidate. Her research interests include computer vision, medical image segmentation.Supported by:
通讯作者:
杨锋
作者简介:
傅励瑶(1998—),女,重庆人,硕士研究生,主要研究方向:计算机视觉、医学图像分割基金资助:
CLC Number:
Liyao FU, Mengxiao YIN, Feng YANG. Transformer based U-shaped medical image segmentation network: a survey[J]. Journal of Computer Applications, 2023, 43(5): 1584-1595.
傅励瑶, 尹梦晓, 杨锋. 基于Transformer的U型医学图像分割网络综述[J]. 《计算机应用》唯一官方网站, 2023, 43(5): 1584-1595.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022040530
Transformer位置 | 模型 | 数据集 | 分割任务 |
---|---|---|---|
编码器 | TransUNet[ | BCV[ | 腹部多器官分割/心脏分割 |
MedT[ | Brain US[ | 脑室隔膜分割/腺体分割 | |
X-Net[ | DSB18[ | 细胞核分割/细胞核分割 | |
TransConver[ | BraTS18[ | 脑部肿瘤分割 | |
TransFuse[ | Kvasir[ | 胃肠息肉分割/皮肤病变域分割 | |
LeViT-UNet[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
TransClaw[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
Swin UNETR[ | BCV | 腹部多器官分割 | |
解码器 | Segtran[ | Kvasir/BraTS19 | 胃肠息肉分割/脑部肿瘤分割 |
编码器和解码器 | nnFormer[ | BCV/ACDC | 腹部多器官分割/心脏分割 |
D-Former[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
MISSFormer[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
Swin UNet[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
MT Net[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
PCAT UNet[ | DRIVE[ | 视网膜血管分割 | |
文献[ | ACDC | 心脏分割 | |
DS-TransUNet[ | Kvasir/GLAS/ISIC2018[ | 胃肠息肉分割/腺体分割/皮肤病变域分割 | |
过渡连接 | UCATR[ | The Segmentation Decathlon[ | 肝癌病变域分割 |
TransBTSv1[ | BraTS19 | 脑部肿瘤分割 | |
MS-TransUNet++[ | PROMISE12[ | 前列腺分割/肝脏肿瘤分割 | |
TransBTSv2[ | BraTS19 | 脑部肿瘤分割 | |
文献[ | ABVS | 胸部肿瘤分割 | |
MBT-Net[ | Alizarine[ | 角膜内皮细胞分割 | |
AFTER-UNet[ | BCV/Thorax-85[ | 腹部多器官分割/胸部多器官分割 | |
MCTrans[ | PanNuke[ | 细胞分割/皮肤病变域分割 | |
TransAtt-UNet[ | ISIC2018/GLAS/DSB18 | 皮肤病变域分割/腺体分割/细胞核分割 | |
跳跃连接 | HTNet[ | KiTS19[ | 肾脏肿瘤分割 |
输出块 | RTNet[ | IDRiD[ | 眼底病变域分割 |
Tab. 1 Overview of Transformer-based medical image segmentation models
Transformer位置 | 模型 | 数据集 | 分割任务 |
---|---|---|---|
编码器 | TransUNet[ | BCV[ | 腹部多器官分割/心脏分割 |
MedT[ | Brain US[ | 脑室隔膜分割/腺体分割 | |
X-Net[ | DSB18[ | 细胞核分割/细胞核分割 | |
TransConver[ | BraTS18[ | 脑部肿瘤分割 | |
TransFuse[ | Kvasir[ | 胃肠息肉分割/皮肤病变域分割 | |
LeViT-UNet[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
TransClaw[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
Swin UNETR[ | BCV | 腹部多器官分割 | |
解码器 | Segtran[ | Kvasir/BraTS19 | 胃肠息肉分割/脑部肿瘤分割 |
编码器和解码器 | nnFormer[ | BCV/ACDC | 腹部多器官分割/心脏分割 |
D-Former[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
MISSFormer[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
Swin UNet[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
MT Net[ | BCV/ACDC | 腹部多器官分割/心脏分割 | |
PCAT UNet[ | DRIVE[ | 视网膜血管分割 | |
文献[ | ACDC | 心脏分割 | |
DS-TransUNet[ | Kvasir/GLAS/ISIC2018[ | 胃肠息肉分割/腺体分割/皮肤病变域分割 | |
过渡连接 | UCATR[ | The Segmentation Decathlon[ | 肝癌病变域分割 |
TransBTSv1[ | BraTS19 | 脑部肿瘤分割 | |
MS-TransUNet++[ | PROMISE12[ | 前列腺分割/肝脏肿瘤分割 | |
TransBTSv2[ | BraTS19 | 脑部肿瘤分割 | |
文献[ | ABVS | 胸部肿瘤分割 | |
MBT-Net[ | Alizarine[ | 角膜内皮细胞分割 | |
AFTER-UNet[ | BCV/Thorax-85[ | 腹部多器官分割/胸部多器官分割 | |
MCTrans[ | PanNuke[ | 细胞分割/皮肤病变域分割 | |
TransAtt-UNet[ | ISIC2018/GLAS/DSB18 | 皮肤病变域分割/腺体分割/细胞核分割 | |
跳跃连接 | HTNet[ | KiTS19[ | 肾脏肿瘤分割 |
输出块 | RTNet[ | IDRiD[ | 眼底病变域分割 |
1 | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. 10.1109/cvpr.2015.7298965 |
2 | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
3 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. |
4 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03) [2022-03-22]. . |
5 | ZHENG S X, LU J C, ZHAO H S, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6877-6886. 10.1109/cvpr46437.2021.00681 |
6 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 213-229. |
7 | CHEN C, LIU Q D, JIN Y M, et al. Source-free domain adaptive fundus image segmentation with denoised pseudo-labeling[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12905. Cham: Springer, 2021: 225-235. |
8 | XIE Y T, ZHANG J P, XIA Y, et al. Unified 2D and 3D pre-training for medical image classification and segmentation[EB/OL]. [2021-12-17]. . |
9 | ZHOU B, LIU C, DUNCAN J S. Anatomy-constrained contrastive learning for synthetic segmentation without ground-truth[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 47-56. |
10 | ZHOU Z W, SHIN J, ZHANG L, et al. Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4761-4772. 10.1109/cvpr.2017.506 |
11 | LUO X D, CHEN J N, SONG T, et al. Semi-supervised medical image segmentation through dual-task consistency[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 8801-8809. 10.1609/aaai.v35i10.17066 |
12 | HONG S M, BONKHOFF A, HOOPES A, et al. Hypernet-ensemble learning of segmentation probability for medical image segmentation with ambiguous labels[EB/OL]. (2021-12-13) [2022-03-24]. . |
13 | YAO H F, HU X W, LI X M. Enhancing pseudo label quality for semi-supervised domain-generalized medical image segmentation[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 3099-3107. 10.1609/aaai.v36i3.20217 |
14 | LUO X D, HU M H, SONG T, et al. Semi-supervised medical image segmentation via cross teaching between CNN and Transformer[C]// Proceedings of the 5th International Conference on Medical Imaging with Deep Learning. New York: JMLR.org, 2022: 820-833. |
15 | XU G, WU X, ZHANG X, et al. LeVit-UNet: make faster encoders with transformer for medical image segmentation[EB/OL]. (2021-07-19) [2022-03-22]. . 10.2139/ssrn.4116174 |
16 | HUANG X H, DENG Z F, LI D D, et al. MISSFormer: an effective medical image segmentation transformer[EB/OL]. (2021-12-19) [2022-03-20]. . 10.1109/tmi.2022.3230943 |
17 | 朱锴,付忠良,陈晓清. 基于卷积神经网络的超声图像左心室分割方法[J]. 计算机应用, 2019, 39(7):2121-2124. 10.11772/j.issn.1001-9081.2018112321 |
ZHU K, FU Z L, CHEN X Q. Left ventricular segmentation method of ultrasound image based on convolutional neural network[J]. Journal of Computer Applications, 2019, 39(7):2121-2124. 10.11772/j.issn.1001-9081.2018112321 | |
18 | 王雪. 基于U-Net多尺度和多维度特征融合的皮肤病变分割方法[J].吉林大学学报(理学版), 2021, 59(1): 123-127. |
WANG X. Skin lesion segmentation method based on U-Net with multi-scale and multi-dimensional feature fusion[J]. Journal of Jilin University (Science Edition), 2021, 59(1):123-127. | |
19 | 董阳,潘海为,崔倩娜,等. 面向多模态磁共振脑瘤图像的小样本分割方法[J]. 计算机应用, 2021, 41(4):1049-1054. 10.11772/j.issn.1001-9081.2020081388 |
DONG Y, PAN H W, CUI Q N, et al. Few-shot segmentation method for multi-modal magnetic resonance images of brain tumor[J]. Journal of Computer Applications, 2021, 41(4):1049-1054. 10.11772/j.issn.1001-9081.2020081388 | |
20 | CHEN J N, LU Y Y, YU Q H, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. (2021-02-08) [2022-02-10]. . |
21 | YAO C, HU M H, ZHAI G T, et al. TransClaw U-Net: Claw U-Net with transformers for medical image segmentation[EB/OL]. (2021-07-12) [2022-02-10]. . 10.1109/icicsp55539.2022.10050624 |
22 | VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 36-46. |
23 | ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]// Proceedings of the 2018 International Workshop on Deep Learning in Medical Image Analysis and the 2018 International Workshop on Multimodal Learning for Clinical Decision Support, LNCS 11045. Cham: Springer, 2018: 3-11. |
24 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. 10.1109/cvpr.2017.243 |
25 | ZHANG Z X, LIU Q J, WANG Y H. Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753. 10.1109/lgrs.2018.2802944 |
26 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
27 | JHA D, SMEDSRUD P H, RIEGLER M A, et al. ResUNet++: an advanced architecture for medical image segmentation[C]// Proceedings of the 2019 IEEE International Symposium on Multimedia. Piscataway: IEEE, 2019: 225-230. 10.1109/ism46123.2019.00049 |
28 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
29 | MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]// Proceedings of the 4th International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571. 10.1109/3dv.2016.79 |
30 | ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]// Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9901. Cham: Springer, 2016: 424-432. |
31 | ISENSEE F, JAEGER P F, KOHL S A A, et al. Automated design of deep learning methods for biomedical image segmentation[EB/OL]. (2020-04-02) [2022-01-24]. . 10.1038/s41592-020-01008-z |
32 | BA J L, KIROS J R, HINTON G E. Layer normalization[EB/OL]. (2016-07-21) [2022-02-11]. . |
33 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. |
34 | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. 10.1109/iccv48922.2021.00986 |
35 | HO J, KALCHBRENNER N, WEISSENBORN D, et al. Axial attention in multidimensional transformers[EB/OL]. (2019-12-20) [2022-02-11]. . |
36 | WANG H Y, ZHU Y K, GREEN B, et al. Axial-DeepLab: stand-alone axial-attention for panoptic segmentation[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12349. Cham: Springer, 2020: 108-126. 10.1007/978-3-030-58548-8_7 |
37 | LI Y Y, WANG Z Y, YIN L, et al. X-Net: a dual encoding- decoding method in medical image segmentation[J/OL]. The Visual Computer (2021-11-05) [2022-02-21]. . 10.1007/s00371-021-02328-7 |
38 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
39 | LIANG J J, YANG C H, ZENG M J, et al. TransConver: transformer and convolution parallel network for developing automatic brain tumor segmentation in MRI images[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(4): 2397-2415. 10.21037/qims-21-919 |
40 | GRAHAM B, EL-NOUBY A, TOUVRON H, et al. LeViT: a vision Transformer in ConvNet’s clothing for faster inference[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 12259-12269. 10.1109/iccv48922.2021.01204 |
41 | ZHANG Y D, LIU H Y, HU Q. TransFuse: fusing Transformers and CNNs for medical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 14-24. |
42 | TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 10347-10357. 10.1109/iccv48922.2021.00091 |
43 | TANG Y C, YANG D, LI W Q, et al. Self-supervised pre-training of Swin Transformers for 3D medical image analysis[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12259-12269. 10.1109/cvpr52688.2022.02007 |
44 | LI S H, SUI X C, LUO X D, et al. Medical image segmentation using squeeze-and-expansion transformers[C]// Proceedings of the 30th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2021: 807-815. 10.24963/ijcai.2021/112 |
45 | LEE J, LEE Y, KIM J, et al. Set Transformer: a framework for attention-based permutation-invariant neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019:3744-3753. |
46 | ZHOU H Y, GUO J S, ZHANG Y H, et al. nnFormer: interleaved transformer for volumetric segmentation[EB/OL]. (2022-02-04) [2022-02-21]. . |
47 | WU Y X, LIAO K L, CHEN J T, et al. D-Former: a U-shaped dilated transformer for 3D medical image segmentation[J]. Neural Computing and Applications, 2023, 35(2): 1931-1944. 10.1007/s00521-022-07859-1 |
48 | CAO H, WANG Y Y, CHEN J, et al. Swin-Unet: Unet-like pure Transformer for medical image segmentation[EB/OL]. (2021-05-12) [2022-02-21]. . 10.1007/978-3-031-25066-8_9 |
49 | WANG H Y, XIE S A, LIN L F, et al. Mixed Transformer U-Net for medical image segmentation[C]// Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 2390-2394. 10.1109/icassp43922.2022.9746172 |
50 | GUO M H, LIU Z N, MU T J, et al. Beyond self-attention: external attention using two linear layers for visual tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022(Early Access): 1-13. 10.1109/tpami.2022.3211006 |
51 | CHEN D, YANG W Z, WANG L J, et al. PCAT-UNet: UNet-like network fused convolution and Transformer for retinal vessel segmentation[J]. PLoS ONE, 2022, 17(1): No.e0262689. 10.1371/journal.pone.0262689 |
52 | LUO X D, HU M H, SONG T, et al. Semi-supervised medical image segmentation via cross teaching between CNN and Transformer[C]// Proceedings of the 5th International Conference on Medical Imaging with Deep Learning. New York: JMLR.org, 2022: 820-833. |
53 | LIN A L, CHEN B Z, XU J Y, et al. DS-TransUNet: dual Swin Transformer U-Net for medical image segmentation[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.4005615. 10.1109/tim.2022.3178991 |
54 | GUO D F, TERZOPOULOS D. A transformer-based network for anisotropic 3D medical image segmentation[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 8857-8861. 10.1109/icpr48806.2021.9411990 |
55 | LUO C, ZHANG J, CHEN X L, et al. UCATR: based on CNN and Transformer encoding and cross-attention decoding for lesion segmentation of acute ischemic stroke in non-contrast computed tomography images[C]// Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2021: 3565-3568. 10.1109/embc46164.2021.9630336 |
56 | WANG W X, CHEN C, DING M, et al. TransBTS: multimodal brain tumor segmentation using Transformer[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 109-119. |
57 | WANG B, WANG F, DONG P W, et al. Multiscale TransUNet++: dense hybrid U-Net with transformer for medical image segmentation[J]. Signal, Image and Video Processing, 2022, 16(6): 1607-1614. 10.1007/s11760-021-02115-w |
58 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. 10.1109/iccv.2017.324 |
59 | WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]// Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers — Volume 2. Piscataway: IEEE, 2003: 1398-1402. 10.1109/acssc.2003.1292181 |
60 | YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: an advanced object detection network[C]// Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 516-520. 10.1145/2964284.2967274 |
61 | LI J Y, WANG W X, CHEN C, et al. TransBTSV2: wider instead of deeper transformer for medical image segmentation[EB/OL]. (2022-05-17) [2022-03-10]. . |
62 | LIU Y Y, YANG Y, JIANG W, et al. 3D deep attentive U-Net with transformer for breast tumor segmentation from automated breast volume scanner[C]// Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2021: 4011-4014. 10.1109/embc46164.2021.9629523 |
63 | ZHANG J X, JIANG Z K, DONG J, et al. Attention gate ResU-Net for automatic MRI brain tumor segmentation[J]. IEEE Access, 2020, 8: 58533-58545. 10.1109/access.2020.2983075 |
64 | ZHANG Y L, HIGASHITA R, FU H Z, et al. A multi-branch hybrid transformer network for corneal endothelial cell segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 99-108. |
65 | YAN X Y, TANG H, SUN S L, et al. AFTer-UNet: axial fusion transformer UNet for medical image segmentation[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 3270-3280. 10.1109/wacv51458.2022.00333 |
66 | XIE Y T, ZHANG J P, SHEN C H, et al. CoTr: efficiently bridging CNN and Transformer for 3D medical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12903. Cham: Springer, 2021: 171-180. |
67 | ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable Transformers for end-to-end object detection[EB/OL]. (2021-03-18) [2022-03-10]. . 10.1609/aaai.v36i1.19893 |
68 | JI Y F, ZHANG R M, WANG H J, et al. Multi-compound transformer for accurate biomedical image segmentation[C]// Proceedings of the 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 12901. Cham: Springer, 2021: 326-336. |
69 | CHEN B Z, LIU Y S, LI Y J, et al. TransAttUnet: multi-level attention-guided U-Net with Transformer for medical image segmentation[EB/OL]. (2022-07-09) [2022-02-21]. . |
70 | MA M J, XIA H Y, TAN Y M, et al. HT-Net: hierarchical context-attention transformer network for medical CT image segmentation[J]. Applied Intelligence, 2022, 52(9): 10692-10705. 10.1007/s10489-021-03010-0 |
71 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. 10.1109/tpami.2015.2389824 |
72 | HUANG S Q, LI J N, XIAO Y Z, et al. RTNet: relation Transformer network for diabetic retinopathy multi-lesion segmentation[J]. IEEE Transactions on Medical Imaging, 2022, 41(6): 1596-1607. 10.1109/tmi.2022.3143833 |
73 | LANDMAN B, XU Z, IGELSIAS J, et al. MICCAI multi-atlas labeling beyond the cranial vault — workshop and challenge[C]// Proceedings of the 2015 International MICCAI Brainlesion Workshop. Cham: Springer, 2015, 5: 12. |
74 | BERNARD O, LALANDE A, ZOTTI C, et al. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved?[J]. IEEE Transactions on Medical Imaging, 2018, 37(11): 2514-2525. 10.1109/tmi.2018.2837502 |
75 | VALANARASU J M J, YASARLA R, WANG P Y, et al. Learning to segment brain anatomy from 2D ultrasound with less data[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(6): 1221-1234. 10.1109/jstsp.2020.3001513 |
76 | SIRINUKUNWATTANA K, PLUIM J P W, CHEN H, et al. Gland segmentation in colon histology images: the GLaS challenge contest[J]. Medical Image Analysis, 2017, 35: 489-502. 10.1016/j.media.2016.08.008 |
77 | CAICEDO J C, GOODMAN A, KARHOHS K W, et al. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl[J]. Nature Methods, 2019, 16(12): 1247-1253. 10.1038/s41592-019-0612-7 |
78 | NAYLOR P, LAÉ M, REYAL F, et al. Segmentation of nuclei in histopathology images by deep regression of the distance map[J]. IEEE Transactions on Medical Imaging, 2019, 38(2): 448-459. 10.1109/tmi.2018.2865709 |
79 | WENINGER L, RIPPEL O, KOPPERS S, et al. Segmentation of brain tumors and patient survival prediction: methods for the BraTS 2018 challenge[C]// Proceedings of the 2018 International MICCAI Brainlesion Workshop, LNCS 11384. Cham: Springer, 2019: 3-12. |
80 | ZHAO Y X, ZHANG Y M, LIU C L. Bag of tricks for 3D MRI brain tumor segmentation[C]// Proceedings of the 2019 International MICCAI Brainlesion Workshop, LNCS 11992. Cham: Springer, 2020: 210-220. |
81 | JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]// Proceedings of the 2020 International Conference on Multimedia Modeling, LNCS 11962. Cham: Springer, 2020: 451-462. |
82 | BERSETH M. ISIC 2017 - skin lesion analysis towards melanoma detection[EB/OL]. (2017-03-01) [2022-02-21]. . 10.1109/iesys.2017.8233570 |
83 | STAAL J, ABRÀMOFF M D, NIEMEIJER M, et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 2004, 23(4): 501-509. 10.1109/tmi.2004.825627 |
84 | HOOVER A D, KOUZNETSOVA V, GOLDBAUM M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J]. IEEE Transactions on Medical imaging, 2000, 19(3): 203-210. 10.1109/42.845178 |
85 | OWEN C G, RUDNICKA A R, MULLEN R, et al. Measuring retinal vessel tortuosity in 10-year-old children: validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) program[J]. Investigative Ophthalmology and Visual Science, 2009, 50(5): 2004-2010. 10.1167/iovs.08-3018 |
86 | CODELLA N, ROTEMBERG V, TSCHANDL P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the International Skin Imaging Collaboration (ISIC)[EB/OL]. (2019-03-29) [2022-03-23]. . |
87 | ANTONELLI M, REINKE A, BAKAS S, et al. The medical segmentation decathlon[J]. Nature Communications, 2022, 13: No.4128. 10.1038/s41467-022-30695-9 |
88 | LITJENS G, TOTH R, van de WENDY, et al. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge[J]. Medical Image Analysis, 2014, 18(2): 359-373. 10.1016/j.media.2013.12.002 |
89 | BILIC P, CHRIST P, LI H B, et al. The Liver Tumor Segmentation benchmark (LiTS)[J]. Medical Image Analysis, 2023, 84: No. 102680 . |
90 | RUGGERI A, SCARPA F, DE LUCA M, et al. A system for the automatic estimation of morphometric parameters of corneal endothelium in alizarine red-stained images[J]. British Journal of Ophthalmology, 2010, 94(5): 643-647. 10.1136/bjo.2009.166561 |
91 | CHEN X M, SUN S L, BAI N, et al. A deep learning-based auto-segmentation system for organs-at-risk on whole-body computed tomography images for radiation therapy[J]. Radiotherapy and Oncology, 2021, 160: 175-184. 10.1016/j.radonc.2021.04.019 |
92 | GAMPER J, ALEMI KOOHBANANI N, BENET K, et al. PanNuke: an open pan-cancer histology dataset for nuclei instance segmentation and classification[C]// Proceedings of the 2019 European Congress on Digital Pathology, LNCS 11435. Cham: Springer, 2019: 11-19. |
93 | HELLER N, SATHIANATHEN N, KALAPARA A, et al. The KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes[EB/OL]. (2020-03-15) [2022-03-12]. . 10.1200/jco.2020.38.6_suppl.626 |
94 | PORWAL P, PACHADE S, KOKARE M, et al. IDRiD: diabetic retinopathy - segmentation and grading challenge[J]. Medical Image Analysis, 2019, 59: No.101561. 10.3390/data3030025 |
95 | LI T, GAAO Y Q, WANG K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501:511-522. 10.1016/j.ins.2019.06.011 |
[1] | Qinghai XU, Shifei DING, Tongfeng SUN, Jian ZHANG, Lili GUO. Improved capsule network based on multipath feature [J]. Journal of Computer Applications, 2023, 43(5): 1330-1335. |
[2] | Rui XU, Shuang LIANG, Hang WAN, Yimin WEN, Shiming SHEN, Jian LI. Extraction of PM2.5 diffusion characteristics based on candlestick pattern matching [J]. Journal of Computer Applications, 2023, 43(5): 1394-1400. |
[3] | Jiahong SUI, Yingchi MAO, Huimin YU, Zicheng WANG, Ping PING. Global image captioning method based on graph attention network [J]. Journal of Computer Applications, 2023, 43(5): 1409-1415. |
[4] | Jianhui HE, Chunlong HU, Xin SHU. Multi-task age estimation method based on multi-peak label distribution learning [J]. Journal of Computer Applications, 2023, 43(5): 1578-1583. |
[5] | Xianlan WANG, Jinkun ZHOU, Nan MU, Chen WANG. Cross-view geo-localization method based on multi-task joint learning [J]. Journal of Computer Applications, 2023, 43(5): 1625-1635. |
[6] | Jinwen GUO, Xinghua MA, Gongning LUO, Wei WANG, Yang CAO, Kuanquan WANG. Guidewire artifact removal method of structure-enhanced IVOCT based on Transformer [J]. Journal of Computer Applications, 2023, 43(5): 1596-1605. |
[7] | Yang LIU, Zhiyang LU, Jun WANG, Jun SHI. Gibbs artifact removal algorithm for magnetic resonance imaging based on self-attention connection UNet [J]. Journal of Computer Applications, 2023, 43(5): 1606-1611. |
[8] | Haiyu YANG, Wenpu GUO, Kai KANG. Signal modulation recognition method based on convolutional long short-term deep neural network [J]. Journal of Computer Applications, 2023, 43(4): 1318-1322. |
[9] | Guangyi DOU, Fanan WEI, Chuangyi QIU, Jianshu CHAO. Tracking appearance features based on attention self-correlation mechanism [J]. Journal of Computer Applications, 2023, 43(4): 1248-1254. |
[10] | Jianqing GAO, Yanhui TU, Feng MA, Zhonghua FU. Progressive ratio mask-based adaptive noise estimation method [J]. Journal of Computer Applications, 2023, 43(4): 1303-1308. |
[11] | Xu ZHANG, Long SHENG, Haifang ZHANG, Feng TIAN, Wei WANG. Pre-hospital emergency text classification model based on label confusion [J]. Journal of Computer Applications, 2023, 43(4): 1050-1055. |
[12] | Xiaoyu FAN, Suzhen LIN, Yanbo WANG, Feng LIU, Dawei LI. Reconstruction algorithm for highly undersampled magnetic resonance images based on residual graph convolutional neural network [J]. Journal of Computer Applications, 2023, 43(4): 1261-1268. |
[13] | Zhoubo XU, Puqing CHEN, Huadong LIU, Xin YANG. Deep graph matching model based on self-attention network [J]. Journal of Computer Applications, 2023, 43(4): 1005-1012. |
[14] | Yongbing GAO, Juntian GAO, Rong MA, Lidong YANG. User granularity-level personalized social text generation model [J]. Journal of Computer Applications, 2023, 43(4): 1021-1028. |
[15] | Cheng FANG, Bei LI, Ping HAN, Qiong WU. Fine-grained emotion classification of Chinese microblog based on syntactic dependency graph [J]. Journal of Computer Applications, 2023, 43(4): 1056-1061. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||