Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (6): 1978-1986.DOI: 10.11772/j.issn.1001-9081.2023060737
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles
					
						                                                                                                                                                                                                                    Mu LI1,2, Yu LUO1( ), Xizheng KE1,2
), Xizheng KE1,2
												  
						
						
						
					
				
Received:2023-06-09
															
							
																	Revised:2023-08-31
															
							
																	Accepted:2023-09-11
															
							
							
																	Online:2023-09-20
															
							
																	Published:2024-06-10
															
							
						Contact:
								Yu LUO   
													About author:LI Mu, born in 1972, M. S., senior engineer. His research interests include radar signal processing, deep learning.Supported by:通讯作者:
					骆宇
							作者简介:李牧(1972—),男,陕西西安人,高级工程师,硕士,主要研究方向:雷达信号处理、深度学习基金资助:CLC Number:
Mu LI, Yu LUO, Xizheng KE. Human vital signs detection algorithm based on frequency modulated continuous wave radar[J]. Journal of Computer Applications, 2024, 44(6): 1978-1986.
李牧, 骆宇, 柯熙政. 基于调频连续波雷达的人体生命体征检测算法[J]. 《计算机应用》唯一官方网站, 2024, 44(6): 1978-1986.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023060737
| 特征参数 | 描述 | 参考值/ms | 异常范围/ms | 异常意义 | 
|---|---|---|---|---|
| MeanRR | RR间期的平均值 | 600~1 000 | >1 000 | 心动过速 | 
| SDNN | NN间期的标准差 | 20~100 | <20 | 交感神经活性减弱 | 
| RMSSD | 相邻NN间期差值的均方根 | 20~50 | <20 | 副交感神经活性减弱 | 
Tab. 1 HRV parameters and their significance
| 特征参数 | 描述 | 参考值/ms | 异常范围/ms | 异常意义 | 
|---|---|---|---|---|
| MeanRR | RR间期的平均值 | 600~1 000 | >1 000 | 心动过速 | 
| SDNN | NN间期的标准差 | 20~100 | <20 | 交感神经活性减弱 | 
| RMSSD | 相邻NN间期差值的均方根 | 20~50 | <20 | 副交感神经活性减弱 | 
| 实验参数 | 数值 | 实验参数 | 数值 | 
|---|---|---|---|
| 雷达调制方式 | FMCW | 快时间采样频率 | 4 MHz | 
| 起始频率 | 77 GHz | 慢时间采样频率 | 32 Hz | 
| 带宽 | 4 GHz | 检测人数 | 1 | 
| 斜率 | 70 MHz/μs | 受试者状态 | 平躺 | 
Tab. 2 Experimental parameters
| 实验参数 | 数值 | 实验参数 | 数值 | 
|---|---|---|---|
| 雷达调制方式 | FMCW | 快时间采样频率 | 4 MHz | 
| 起始频率 | 77 GHz | 慢时间采样频率 | 32 Hz | 
| 带宽 | 4 GHz | 检测人数 | 1 | 
| 斜率 | 70 MHz/μs | 受试者状态 | 平躺 | 
| 算法 | MSE | MAPE/% | 运行时间/s | 
|---|---|---|---|
| WT | 82.50 | 9.80 | 1.19 | 
| CEEMD | 32.10 | 6.80 | 17.21 | 
| VMD | 25.90 | 5.89 | 2.34 | 
| SSA-FE-EWT | 4.85 | 2.47 | 0.47 | 
Tab. 3 Performance comparison of three separation algorithms
| 算法 | MSE | MAPE/% | 运行时间/s | 
|---|---|---|---|
| WT | 82.50 | 9.80 | 1.19 | 
| CEEMD | 32.10 | 6.80 | 17.21 | 
| VMD | 25.90 | 5.89 | 2.34 | 
| SSA-FE-EWT | 4.85 | 2.47 | 0.47 | 
| 距离参数/m | 准确度 | 均方根误差/bpm | 相关系数 | 
|---|---|---|---|
| 0.5 | 0.974 | 5.66 | 0.96 | 
| 1.0 | 0.977 | 4.85 | 0.96 | 
| 2.0 | 0.949 | 18.94 | 0.76 | 
Tab. 4 Evaluation of heart rate detection results under different distance conditions
| 距离参数/m | 准确度 | 均方根误差/bpm | 相关系数 | 
|---|---|---|---|
| 0.5 | 0.974 | 5.66 | 0.96 | 
| 1.0 | 0.977 | 4.85 | 0.96 | 
| 2.0 | 0.949 | 18.94 | 0.76 | 
| 实验 | 算法 | MSE | MAPE/% | 运行 时间/s | 
|---|---|---|---|---|
| 实验1 | SSA-FE-EWT+ 改进频率插值的估计算法 | 4.36 | 2.61 | 0.58 | 
| 实验2 | EWT+ 改进频率插值的估计算法 | 12.87 | 4.09 | 0.38 | 
| 实验3 | SSA-FE-EWT | 7.92 | 3.11 | 0.47 | 
| 实验4 | EWT | 19.52 | 4.97 | 0.27 | 
Tab. 5 Effectiveness validation of estimation algorithm with SSA-FE/improved frequency interpolation
| 实验 | 算法 | MSE | MAPE/% | 运行 时间/s | 
|---|---|---|---|---|
| 实验1 | SSA-FE-EWT+ 改进频率插值的估计算法 | 4.36 | 2.61 | 0.58 | 
| 实验2 | EWT+ 改进频率插值的估计算法 | 12.87 | 4.09 | 0.38 | 
| 实验3 | SSA-FE-EWT | 7.92 | 3.11 | 0.47 | 
| 实验4 | EWT | 19.52 | 4.97 | 0.27 | 
| 算法 | |||
|---|---|---|---|
| ECG | 758.2 | 25.49 | 21.72 | 
| 本文算法 | 751.7 | 32.18 | 18.28 | 
| CEEMD | 804.7 | 53.64 | 26.72 | 
| WT | 811.8 | 64.42 | 43.25 | 
| VMD | 773.0 | 39.84 | 41.32 | 
Tab.6 Comparison of HRV eigenvalues
| 算法 | |||
|---|---|---|---|
| ECG | 758.2 | 25.49 | 21.72 | 
| 本文算法 | 751.7 | 32.18 | 18.28 | 
| CEEMD | 804.7 | 53.64 | 26.72 | 
| WT | 811.8 | 64.42 | 43.25 | 
| VMD | 773.0 | 39.84 | 41.32 | 
| 1 | 张宁宁,陈艺.虚拟现实技术结合音乐干预对烧伤患者创面换药时疼痛程度及心率、血压的影响[J].解放军护理杂志,2020,37(11):78-80. | 
| ZHANG N N, CHEN Y. VR technique combined with music intervention on pain degree and heart rate,blood pressure of burn patients during wound dressing change[J]. Military Nursing, 2020, 37(11): 78-80. | |
| 2 | 西安理工大学. 一种基于雷达的生命体征检测方法:CN202110315023.1[P].2021-03-24. | 
| Xi’an University of Technology. A radar-based method for detecting vital signs: CN202110315023.1[P].2023-07-14. | |
| 3 | 胡锡坤,金添.基于自适应小波尺度选择的生物雷达呼吸与心跳分离方法[J].雷达学报,2016,5(5):462-469. | 
| HU X K, JIN T. Adaptive wavelet scale selection-based method for separating respiration and heartbeat in bio-radars [J]. Journal of Radar, 2016,5(5): 462-469. | |
| 4 | ZHU Z, YANG D, ZHAO R,et al.Vital sign signal extraction method based on permutation entropy and EMD algorithm for ultra-wideband radar[C]// Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering. Piscataway: IEEE, 2019: 1268-1273. | 
| 5 | ZHAO J, HUANG J, JIA G,et al. Non-contact method of heart rate using a webcam[C]// Proceedings of the 2018 IEEE International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data. Piscataway: IEEE, 2018: 1902-1906. | 
| 6 | 田哲嘉.基于毫米波雷达的高可靠呼吸与心率提取算法的设计与实现[D]. 西安:西安理工大学,2021: 15-17. | 
| TIAN Z J. The design and implementation of the high-reliable breathing and heart rate extraction algorithm based on millimeter wave radar [D]. Xi’an: Xi’an University of Technology, 2021:15-17. | |
| 7 | 景会成,白英杰,曾凯,等.基于77 GHz毫米波雷达感知的生命体征检测方法[J].电子测量技术,2022,45(22):55-63. | 
| JING H C, BAI Y J, ZENG K, et al. Vital sign detection method based on 77 GHz mmwave radar perception [J]. Electronic Measurement Technology, 2022, 45(22): 55-63. | |
| 8 | SAMEERA J N, DROITCOUR A D, BORIC-LUBECKE O. Heart rate detection using single-channel Doppler radar system [C]// Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway: IEEE, 2022: 1953-1956. | 
| 9 | EBRAHIM M, HEYDARI F, J-M REDOUTE, et al. Accurate heart rate detection from on-body continuous wave radar sensors using wavelet transform[C]// Proceedings of the 2018 IEEE SENSORS. Piscataway: IEEE, 2018: 1-4. | 
| 10 | 高琳,曹建国.基于输气管道泄漏声发射信号特征的小波基构造研究[J].振动与冲击,2023,42(10):128-135. | 
| GAO L, CAO J G. Research on wavelet basis construction based on the characteristics of acoustic emission signals in gas pipe leakage [J]. Vibration and Impact, 2023, 42(10): 128-135. | |
| 11 | HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. | 
| 12 | ZHU Z, YANG D, ZHAO R,et al. Vital sign signal extraction method based on permutation entropy and EMD algorithm for ultra-wideband radar [C]// Proceedings of the 2019 3rd International Conference on Electronic Information Technology and Computer Engineering. Piscataway: IEEE, 2019: 1268-1273. | 
| 13 | 党春磊.基于CEEMD的定量自适应ECG去噪方法研究[D]. 合肥:合肥工业大学,2019: 28-30. | 
| DANG C L. Research on CEEMD-based self-adaptable ECG noise method [D].Hefei: Hefei University of Technology, 2019:28-30. | |
| 14 | 刘建昌,权贺,于霞,等.基于参数优化VMD和样本熵的滚动轴承故障诊断[J].自动化学报,2022,48(3):808-819. | 
| LIU J C, QUAN H, YU X,et al. Rolling bearing fault diagnosis based on parameter optimization VMD and sample entropy[J]. Acta Automatica Sinica, 2022, 48(3): 808-819. | |
| 15 | WU K J, YANG C-L.Heart rate extraction with vmd algorithm in non-stationary clutter environment based on FMCW radar systems[C]// Proceedings of the 2021 IEEE International Symposium on Radio-Frequency Integration Technology.Piscataway: IEEE, 2021: 1-3. | 
| 16 | GILLES J. Empirical wavelet transform[J].IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. | 
| 17 | DAUBECHIES I, HEIL C. Ten lectures on wavelets[J]. Computer in Physics, 1992, 6(6): 697. | 
| 18 | 薛建凯.一种新型的群智能优化技术的研究与应用——麻雀搜索算法[D].上海:东华大学,2020: 15-19. | 
| XUE J K. Research and application of a novel swarm intelligence optimization technique: sparrow search algorithm [D]. Shanghai: Donghua University, 2020:15-19. | |
| 19 | WANG Z, CHEN H, YUAN Z, et al. Multi-scale fuzzy entropy-based feature selection[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(9): 3248-3262. | 
| 20 | 吕鑫,慕晓冬,张钧.基于改进麻雀搜索算法的多阈值图像分割[J].系统工程与电子技术,2021,43(2):318-327. | 
| LYU X, MU X D, ZHANG J. Multi-threshold image segmentation based on improved sparrow search algorithm [J]. Systems Engineering and Electronics, 2021, 43(2): 318-327. | |
| 21 | PETROVIĆ V L, JANKOVIĆ M, LUPŠIĆ A V, et al. High-accuracy real-time monitoring of heart rate variability using 24 GHz continuous-wave doppler radar [J].IEEE Access. 2019,7:74721-74733. | 
| 22 | 石丁,乔嘉豪,李瑞瑶,等.基于生物雷达的灾后受挤压伤员生命状态识别方法研究[J].医疗卫生装备,2022,43(5):1-7,13. | 
| SHI D, QIAO J H, LI R Y,et al. Bio-radar-based method for identifying life state of post-disaster crush injury patient [J]. Chinese Medical Equipment Journal, 2022,43(5): 1-7, 13. | |
| 23 | 李陈璇,丁晓梅,朱红军.心率变异性分析在心血管疾病中应用的研究进展[J].中西医结合心脑血管病杂志,2020,18(1):82-84. | 
| LI C X, DING X M, ZHU H J. Research progress on the application of heart rate variability analysis in cardiovascular diseases[J]. Chinese Journal of Integrative Medicine on Cardio-Cerebrovascular Disease, 2020,18(1):82-84. | |
| 24 | 曹文静,张金萍,马建新,等.心率变异性临床应用的研究进展[J].实用心电学杂志,2022,31(2):137-143. | 
| CAO W J, ZHANG J P, MA J X, et al. Research progress in clinical application of heart rate variability [J]. Journal of Practical Electrocardiology, 2022, 31(2): 137-143. | |
| 25 | SUN J, YU Y, XIN L.Research on path planning of AGV based on improved ant colony optimization algorithm[C]// Proceedings of the 2021 33rd Chinese Control and Decision Conference.Piscataway: IEEE, 2021:7567-7572. | 
| 26 | ANTUNES A R, SILVA J P, BRAGA C A, et al. Feature selection optimization for heart rate variability[C]// Proceedings of the 2023 11th International Symposium on Digital Forensics and Security. Piscataway: IEEE, 2023:1-6. | 
| 27 | 方杨颖.心率变异性在急性冠脉综合征中的应用研究进展[J].现代医药卫生,2023,39(6):1011-1014. | 
| FANG Y Y. Application of heart rate variability in acute coronary syndrome [J]. Journal of Modern Medicine & Health, 2023, 39(6): 1011-1014. | 
| [1] | Xiuxi WEI, Maosong PENG, Huajuan HUANG. Node coverage optimization of wireless sensor network based on multi-strategy improved butterfly optimization algorithm [J]. Journal of Computer Applications, 2024, 44(4): 1009-1017. | 
| [2] | Dahai LI, Meixin ZHAN, Zhendong WANG. Enhanced sparrow search algorithm based on multiple improvement strategies [J]. Journal of Computer Applications, 2023, 43(9): 2845-2854. | 
| [3] | Yujie ZHANG, Fan WANG. Lighting control optimization based on improved sparrow search algorithm [J]. Journal of Computer Applications, 2023, 43(3): 835-841. | 
| [4] | Bing GAO, Ya ZHENG, Jing QIN, Qijie ZOU, Zumin WANG. Network intrusion detection algorithm based on sparrow search algorithm and improved particle swarm optimization algorithm [J]. Journal of Computer Applications, 2022, 42(4): 1201-1206. | 
| [5] | Yuxian DUAN, Changyun LIU. Sparrow search algorithm based on Sobol sequence and crisscross strategy [J]. Journal of Computer Applications, 2022, 42(1): 36-43. | 
| [6] | TANG Andi, HAN Tong, XU Dengwu, XIE Lei. Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm [J]. Journal of Computer Applications, 2021, 41(7): 2128-2136. | 
| [7] | YANG Min LIU Guang-yuan WEN Wan-hui. Nonlinear analysis of ECG and HRV signals with two types of emotional states [J]. Journal of Computer Applications, 2012, 32(10): 2963-2965. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||