Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2819-2827.DOI: 10.11772/j.issn.1001-9081.2022091421
• Advanced computing • Previous Articles Next Articles
Maozu GUO1,2, Yazhe ZHANG1,2, Lingling ZHAO3()
Received:
2022-09-26
Revised:
2023-01-30
Accepted:
2023-02-01
Online:
2023-02-28
Published:
2023-09-10
Contact:
Lingling ZHAO
About author:
GUO Maozu, born in 1966, Ph. D., professor. His research interests include machine learning, smart city and intelligent construction.Supported by:
通讯作者:
赵玲玲
作者简介:
郭茂祖(1966—),男,山东夏津人,教授,博士,CCF会员,主要研究方向:机器学习、智慧城市与智能建造基金资助:
CLC Number:
Maozu GUO, Yazhe ZHANG, Lingling ZHAO. Electric vehicle charging station siting method based on spatial semantics and individual activities[J]. Journal of Computer Applications, 2023, 43(9): 2819-2827.
郭茂祖, 张雅喆, 赵玲玲. 基于空间语义和个体活动的电动汽车充电站选址方法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2819-2827.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091421
特征 | 描述 | |
---|---|---|
基本 信息 | 时间(Time) | 时间戳转换为北京时间 |
经度(Lng) | 某一个活动点的经度 | |
纬度(Lat) | 某一个活动点的纬度 | |
司机(ID) | 出租车司机ID | |
高级 信息 | 需求司机 | 根据EV占比以及需求率和车流密度产生 |
需求区域 | 根据现有充电站服务半径筛选未被覆盖区域 | |
POI信息 | 活动点的名称 |
Tab. 1 Information of dataset
特征 | 描述 | |
---|---|---|
基本 信息 | 时间(Time) | 时间戳转换为北京时间 |
经度(Lng) | 某一个活动点的经度 | |
纬度(Lat) | 某一个活动点的纬度 | |
司机(ID) | 出租车司机ID | |
高级 信息 | 需求司机 | 根据EV占比以及需求率和车流密度产生 |
需求区域 | 根据现有充电站服务半径筛选未被覆盖区域 | |
POI信息 | 活动点的名称 |
司机编号 | 订单编号 | 时间戳 | 经度/(°E) | 纬度/(°N) |
---|---|---|---|---|
8f20c9188561b796ef8e26196de30be4 | 39a096b71376b82f35732eff6d95779b | 1477969198 | 104.075 76 | 30.723 08 |
1d6a00f022a7c78fd8e5f652557296ac | 992578041ce98f9956d0c22a4bfc566a | 1477989864 | 104.101 86 | 30.685 23 |
D0c7229ae9f6501dbd5c1237c1a31d1 | d9d4e03abd6439d7149356c89e52f710 | 1477960321 | 104.073 03 | 30.684 55 |
Tab. 2 Examples of driver trajectory data
司机编号 | 订单编号 | 时间戳 | 经度/(°E) | 纬度/(°N) |
---|---|---|---|---|
8f20c9188561b796ef8e26196de30be4 | 39a096b71376b82f35732eff6d95779b | 1477969198 | 104.075 76 | 30.723 08 |
1d6a00f022a7c78fd8e5f652557296ac | 992578041ce98f9956d0c22a4bfc566a | 1477989864 | 104.101 86 | 30.685 23 |
D0c7229ae9f6501dbd5c1237c1a31d1 | d9d4e03abd6439d7149356c89e52f710 | 1477960321 | 104.073 03 | 30.684 55 |
序号 | 需求司机 | 最近充电站 |
---|---|---|
0 | [104.065°E,30.669°N] | [104.067°E,30.663°N] |
1 | [104.100°E,30.686°N] | [104.095°E,30.696°N] |
2 | [104.046°E,30.693°N] | [104.039°E,30.689°N] |
Tab. 3 Matching drivers with demand to the nearest charging station
序号 | 需求司机 | 最近充电站 |
---|---|---|
0 | [104.065°E,30.669°N] | [104.067°E,30.663°N] |
1 | [104.100°E,30.686°N] | [104.095°E,30.696°N] |
2 | [104.046°E,30.693°N] | [104.039°E,30.689°N] |
经度/(°E) | 纬度/(°N) | 充电站被选择次数 |
---|---|---|
30.671 2 | 104.124 4 | 53 |
30.697 8 | 104.111 4 | 128 |
30.689 8 | 104.069 1 | 188 |
30.678 6 | 104.060 6 | 127 |
30.675 9 | 104.091 2 | 293 |
30.697 2 | 104.081 5 | 230 |
30.711 0 | 104.101 3 | 145 |
30.652 1 | 104.048 3 | 86 |
30.668 5 | 104.059 3 | 403 |
30.688 5 | 104.053 7 | 247 |
30.659 7 | 104.115 1 | 227 |
30.700 0 | 104.060 3 | 130 |
30.721 2 | 104.067 8 | 85 |
30.712 5 | 104.055 1 | 65 |
30.708 1 | 104.064 8 | 58 |
Tab. 4 Number of selected times of new charging stations
经度/(°E) | 纬度/(°N) | 充电站被选择次数 |
---|---|---|
30.671 2 | 104.124 4 | 53 |
30.697 8 | 104.111 4 | 128 |
30.689 8 | 104.069 1 | 188 |
30.678 6 | 104.060 6 | 127 |
30.675 9 | 104.091 2 | 293 |
30.697 2 | 104.081 5 | 230 |
30.711 0 | 104.101 3 | 145 |
30.652 1 | 104.048 3 | 86 |
30.668 5 | 104.059 3 | 403 |
30.688 5 | 104.053 7 | 247 |
30.659 7 | 104.115 1 | 227 |
30.700 0 | 104.060 3 | 130 |
30.721 2 | 104.067 8 | 85 |
30.712 5 | 104.055 1 | 65 |
30.708 1 | 104.064 8 | 58 |
算法 | POI覆盖数 | 选择原有充电桩次数 | 选择新建充电桩次数 | 建站后POI覆盖率/% | 新建站被选择率/% | 新建充电站 平均选择率/% |
---|---|---|---|---|---|---|
建站前 | 4 488 | 4 602 | — | — | — | — |
CTAEA | 6 632 | 2 466 | 2 488 | 72.8 | 48.7 | 3.25 |
NSGA2 | 4 545 | 3 076 | 1 622 | 49.9 | 31.7 | 2.12 |
SPEA2 | 4 752 | 3 988 | 633 | 52.2 | 12.4 | 0.83 |
Tab. 5 Performance comparison of different algorithms before and after station construction
算法 | POI覆盖数 | 选择原有充电桩次数 | 选择新建充电桩次数 | 建站后POI覆盖率/% | 新建站被选择率/% | 新建充电站 平均选择率/% |
---|---|---|---|---|---|---|
建站前 | 4 488 | 4 602 | — | — | — | — |
CTAEA | 6 632 | 2 466 | 2 488 | 72.8 | 48.7 | 3.25 |
NSGA2 | 4 545 | 3 076 | 1 622 | 49.9 | 31.7 | 2.12 |
SPEA2 | 4 752 | 3 988 | 633 | 52.2 | 12.4 | 0.83 |
算法 | 最小距离和/km | 平均选择距离/km |
---|---|---|
现有充电站 | 14 550.8 | 2.85 |
CTAEA | 5 674.1 | 1.11 |
NSGA2 | 6 992.2 | 1.37 |
SPEA2 | 7 629.0 | 1.49 |
Tab. 6 Driver’s selected distance cost of different algorithms
算法 | 最小距离和/km | 平均选择距离/km |
---|---|---|
现有充电站 | 14 550.8 | 2.85 |
CTAEA | 5 674.1 | 1.11 |
NSGA2 | 6 992.2 | 1.37 |
SPEA2 | 7 629.0 | 1.49 |
1 | KANG Q, WANG J B, ZHOU M C, et al. Centralized charging strategy and scheduling algorithm for electric vehicles under a battery swapping scenario[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(3):659-669. 10.1109/tits.2015.2487323 |
2 | WU Y N, YANG M, ZHANG H B, et al. Optimal site selection of electric vehicle charging stations based on a cloud model and the PROMETHEE method[J]. Energies, 2016, 9(3): No.157. 10.3390/en9030157 |
3 | ZHANG Q, ZHU Y, WANG Z, et al. Siting and sizing of electric vehicle fast-charging station based on quasi-dynamic traffic flow[J]. IET Renewable Power Generation, 2020, 14(19):4204-4214. 10.1049/iet-rpg.2020.0439 |
4 | ZHOU B W, LITTLER T, FOLEY A. Electric vehicle capacity forecasting model with application to load levelling[C]// Proceedings of the 2015 IEEE Power and Energy Society General Meeting. Piscataway: IEEE, 2015: 1-5. 10.1109/pesgm.2015.7285829 |
5 | 杨珍珍,高自友. 数据驱动的电动汽车充电站选址方法[J]. 交通运输系统工程与信息, 2018, 18(5):143-150. |
YANG Z Z, GAO Z Y. Location method of electric vehicle charging station based on data driven[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5):143-150. | |
6 | SUN C, LI T, TANG X. A data-driven approach for optimizing early-stage electric vehicle charging station placement[EB/OL]. [2022-02-12]. . 10.1109/tii.2023.3245633 |
7 | PAN L, YAO E J, YANG Y, et al. A location model for Electric Vehicle (EV) public charging stations based on drivers’ existing activities[J]. Sustainable Cities and Society, 2020, 59: No.102192. 10.1016/j.scs.2020.102192 |
8 | JORDÁN J, PALANCA J, DEL VAL E, et al. Localization of charging stations for electric vehicles using genetic algorithms[J]. Neurocomputing, 2021, 452:416-423. 10.1016/j.neucom.2019.11.122 |
9 | 臧海祥,傅雨婷,陈铭,等. 基于改进自适应遗传算法的EV充电站动态规划[J]. 电力自动化设备, 2020, 40(1):163-170. 10.16081/j.epae.201912023 |
ZANG H X, FU Y T, CHEN M, et al. Dynamic planning of EV charging station based on improved adaptive genetic algorithm[J]. Electric Power Automation Equipment, 2020, 40(1):163-170. 10.16081/j.epae.201912023 | |
10 | 夏敏浩,王骏,李新聪,等. 基于改进PSO算法的电动出租车充电站站址规划[J]. 电气自动化, 2020, 42(5): 16-18, 41. 10.3969/j.issn.1000-3886.2020.05.005 |
XIA M H, WANG J, LI X C, et al. Location planning for electric taxi charging stations based on improved PSO algorithm[J]. Electrical Automation, 2020, 42(5): 16-18, 41. 10.3969/j.issn.1000-3886.2020.05.005 | |
11 | PAGANY R, MARQUARDT A, ZINK R. Electric charging demand location model - a user- and destination-based locating approach for electric vehicle charging stations[J]. Sustainability, 2019, 11(8): No.2301. 10.3390/su11082301 |
12 | CHEN X D, GAO C, CHEN X Y, et al. Multi-objective optimal allocation of DG-EV charging station considering space-time characteristics model[J]. IOP Conference Series: Earth and Environmental Science, 2021, 769(4): No.042104. 10.1088/1755-1315/769/4/042104 |
13 | HE H, GE Q. Location planning of electric taxi charging station based on driving trajectory[C]// Proceedings of the 2021 International Conference on Energy and Power Engineering. Les Ulis: EDP Sciences, 2021: No.01024. 10.1051/e3sconf/202127101024 |
14 | ZUO A B. Prediction and distribution of EV charging stations[J]. AIP Conference Proceedings, 2019, 2066(1): No.020048. |
15 | BAI X, CHIN K S, ZHOU Z L. A bi-objective model for location planning of electric vehicle charging stations with GPS trajectory data[J]. Computers and Industrial Engineering, 2019, 128:591-604. 10.1016/j.cie.2019.01.008 |
16 | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [EB/OL]. [2022-04-29]. . 10.1007/3-540-48238-5_5 |
17 | 黄丹慧. 基于DBSCAN算法的充电站多层次选址优化模型研究[D].重庆:重庆大学, 2019:39-41. |
HUANG D H. Optimal model of locating multi-layer charging stations based on DBSCAN algorithm[D]. Chongqing: Chongqing University, 2019:39-41. | |
18 | 郭磊,王克文,文福拴,等. 电动汽车充电设施规划研究综述与展望[J]. 电力科学与技术学报, 2019, 34(3):56-70. 10.3969/j.issn.1673-9140.2019.03.006 |
GUO L, WANG K W, WEN F S, et al. Review and prospect of charging facility planning of electric vehicles[J]. Journal of Electric Power Science and Technology, 2019, 34(3):56-70. 10.3969/j.issn.1673-9140.2019.03.006 | |
19 | LI K, CHEN R Z, FU G T, et al. Two-archive evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 303-315. 10.1109/tevc.2018.2855411 |
20 | 郭茂祖,杨倩楠,赵玲玲. 基于条件Wasserstein生成对抗网络的图像生成[J]. 计算机应用, 2021, 41(5):1432-1437. |
GUO M Z, YANG Q N, ZHAO L L. Image generation based on conditional-Wassertein generative adversarial network[J]. Journal of Computer Applications, 2021, 41(5):1432-1437. | |
21 | JIANG H L, LIU B Q, WANG Y W, et al. Multiobjective TOU pricing optimization based on NSGA2[J]. Journal of Applied Mathematics, 2014, 2014: No.104518. 10.1155/2014/104518 |
22 | ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm[R/OL]. (2001-05) [2022-06-12].. |
[1] | Zhouhua ZHU, Qi QI. Automatic detection and recognition of electric vehicle helmet based on improved YOLOv5s [J]. Journal of Computer Applications, 2023, 43(4): 1291-1296. |
[2] | Zhishuo LIU, Ruosi LIU, Zhe CHEN. Cold chain electric vehicle routing problem based on hybrid ant colony optimization [J]. Journal of Computer Applications, 2022, 42(10): 3244-3251. |
[3] | LI Jin, WANG Feng, YANG Shenyu. Freight routing optimization model and algorithm of battery-swapping electric vehicle [J]. Journal of Computer Applications, 2021, 41(6): 1792-1798. |
[4] | ZHOU Meiling, CHEN Huaili. Fuzzy multi-objective charging scheduling algorithm for electric vehicle based on load balance [J]. Journal of Computer Applications, 2021, 41(4): 1192-1198. |
[5] | LIU Yuliang, CHEN Huaili. Distribution path planning and charging strategy for pure electric vehicles with load constraint [J]. Journal of Computer Applications, 2020, 40(10): 2831-2837. |
[6] | WU Xuchen, PIAO Chunhui, JIANG Xuehong. Siting model of electric taxi charging station based on GPU parallel computing [J]. Journal of Computer Applications, 2019, 39(10): 3071-3078. |
[7] | LU Mingchi, WANG Shouhua, LI Yunke, JI Yuanfa, SUN Xiyan, DENG Guihui. Bluetooth location algorithm based on feature matching and distance weighting [J]. Journal of Computer Applications, 2018, 38(8): 2359-2364. |
[8] | LI Ye, CHEN Yiyan, ZHANG Shufen. Design of mixed data clustering algorithm based on density peak [J]. Journal of Computer Applications, 2018, 38(2): 483-490. |
[9] | ZHANG Jie, YANG Chunyu, JU Fei, XU Xiaolong. Optimization of ordered charging strategy for large scale electric vehicles based on quadratic clustering [J]. Journal of Computer Applications, 2017, 37(10): 2978-2982. |
[10] | GAO Wenyu, LI Hua. Approximation algorithm of cluster vertex deletion [J]. Journal of Computer Applications, 2015, 35(8): 2137-2139. |
[11] | XU Xiang-bin WANG Jia-qiang TU Huan MU Ming. Customer classification of E-commerce based on improved RFM model [J]. Journal of Computer Applications, 2012, 32(05): 1439-1442. |
[12] | Yun-biao WU Yi-min YANG. New divisional fire strategy of RoboCup rescue simulation [J]. Journal of Computer Applications, 2011, 31(07): 1998-2000. |
[13] | . Method for determining optimal number of clusters in K-means clustering algorithm [J]. Journal of Computer Applications, 2010, 30(8): 1995-1998. |
[14] | . New linear grouping algorithm based on total least absolute deviation criteria [J]. Journal of Computer Applications, 2010, 30(3): 810-812. |
[15] | . Efficient mixed clustering algorithm and its application in anomaly detection [J]. Journal of Computer Applications, 2010, 30(07): 1916-1918. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||