Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3244-3251.DOI: 10.11772/j.issn.1001-9081.2021091572
• Frontier and comprehensive applications • Previous Articles Next Articles
Zhishuo LIU, Ruosi LIU, Zhe CHEN
Received:
2021-09-06
Revised:
2022-04-12
Accepted:
2022-04-14
Online:
2022-10-14
Published:
2022-10-10
Contact:
Zhishuo LIU
About author:
LIU Zhishuo, born in 1977, Ph. D. , associate professor. His research interests include intelligent logistics and agile supply chain,internet of vehicles, internet of things.Supported by:
刘志硕, 刘若思, 陈哲
通讯作者:
刘志硕
作者简介:
第一联系人:刘志硕(1977—),男,湖南安仁人,副教授,博士,主要研究方向:智慧物流与敏捷供应链、车联网、物联网; zhsliu@bjtu.edu.cn基金资助:
CLC Number:
Zhishuo LIU, Ruosi LIU, Zhe CHEN. Cold chain electric vehicle routing problem based on hybrid ant colony optimization[J]. Journal of Computer Applications, 2022, 42(10): 3244-3251.
刘志硕, 刘若思, 陈哲. 基于混合蚁群算法的冷链电动汽车车辆路径问题[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3244-3251.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021091572
符号 | 描述 | 单位 |
---|---|---|
0,N+1 | 配送中心 | ― |
V | 客户集合 | ― |
K | 配送车辆集合 | ― |
F | 充电站集合 | ― |
I | ― | |
― | ||
― | ||
― | ||
― | ||
C | 配送车辆载重量 | kg |
Q | 电池最大容量 | kW⋅h |
车辆行驶速度 | km/h | |
g | 充电速度 | kW⋅h/h |
卸货速度 | kg/h | |
节点i、j之间的距离 | km | |
车辆从i到j的行驶时间, | h | |
客户i的需求量 | kg | |
客户i的服务时间, | h | |
a | 每辆车的固定成本 | 元/辆 |
b | 单位耗电量成本 | 元/(kW⋅h) |
h | 提供车辆动力单位里程消耗的电能 | kW⋅h/km |
l | 单位时间制冷消耗的电能 | kW⋅h/h |
Tab. 1 Setting of sets and parameters
符号 | 描述 | 单位 |
---|---|---|
0,N+1 | 配送中心 | ― |
V | 客户集合 | ― |
K | 配送车辆集合 | ― |
F | 充电站集合 | ― |
I | ― | |
― | ||
― | ||
― | ||
― | ||
C | 配送车辆载重量 | kg |
Q | 电池最大容量 | kW⋅h |
车辆行驶速度 | km/h | |
g | 充电速度 | kW⋅h/h |
卸货速度 | kg/h | |
节点i、j之间的距离 | km | |
车辆从i到j的行驶时间, | h | |
客户i的需求量 | kg | |
客户i的服务时间, | h | |
a | 每辆车的固定成本 | 元/辆 |
b | 单位耗电量成本 | 元/(kW⋅h) |
h | 提供车辆动力单位里程消耗的电能 | kW⋅h/km |
l | 单位时间制冷消耗的电能 | kW⋅h/h |
符号 | 描述 | 单位 |
---|---|---|
车辆k到达节点i的剩余电量 | kW·h | |
车辆k在充电站的充电量 | kW·h | |
车辆k在充电站的充电时间, | h | |
车辆k到达节点i时的装载量 | kg | |
车辆k是否从节点i行驶到节点j | ― |
Tab. 2 Setting of decision variables
符号 | 描述 | 单位 |
---|---|---|
车辆k到达节点i的剩余电量 | kW·h | |
车辆k在充电站的充电量 | kW·h | |
车辆k在充电站的充电时间, | h | |
车辆k到达节点i时的装载量 | kg | |
车辆k是否从节点i行驶到节点j | ― |
符号 | 描述 | 取值 | 符号 | 描述 | 取值 |
---|---|---|---|---|---|
m_Antnum | 蚂蚁数量 | 50 | 转移概率系数 | 2 | |
m_Maxiter | 迭代次数 | 200 | 转移概率系数 | 3 | |
因子得分增量 | 20 | 转移概率系数 | 3 | ||
信息素耗散率 | 0.05 | 轮盘赌参数 | 0.1 | ||
转移概率系数 | 3 |
Tab. 3 ACO algorithm parameters
符号 | 描述 | 取值 | 符号 | 描述 | 取值 |
---|---|---|---|---|---|
m_Antnum | 蚂蚁数量 | 50 | 转移概率系数 | 2 | |
m_Maxiter | 迭代次数 | 200 | 转移概率系数 | 3 | |
因子得分增量 | 20 | 转移概率系数 | 3 | ||
信息素耗散率 | 0.05 | 轮盘赌参数 | 0.1 | ||
转移概率系数 | 3 |
符号 | 描述 | 取值 | 符号 | 描述 | 取值 |
---|---|---|---|---|---|
T | 初始温度 | 100 | b | 单位耗电成本 | 0.5 |
H | 冷却率 | 0.999 | a | 单位固定成本 | 200 |
车辆速度 | 60 | h | 单位里程行驶耗电量 | 1 | |
卸货速度 | 100 | l | 单位时间制冷耗量 | 5 |
Tab. 2 Electric vehicle performance parameters
符号 | 描述 | 取值 | 符号 | 描述 | 取值 |
---|---|---|---|---|---|
T | 初始温度 | 100 | b | 单位耗电成本 | 0.5 |
H | 冷却率 | 0.999 | a | 单位固定成本 | 200 |
车辆速度 | 60 | h | 单位里程行驶耗电量 | 1 | |
卸货速度 | 100 | l | 单位时间制冷耗量 | 5 |
算例 | CPLEX | ACO算法 | ||
---|---|---|---|---|
Z/元 | t/s | Z/元 | t/s | |
平均值 | 94.70 | 0.36 | ||
C101-5 | 719.14 | 2.31 | 719.14 | 0.19 |
C206-5 | 535.05 | 0.87 | 535.05 | 0.32 |
R104-5 | 485.18 | 1.45 | 485.18 | 0.26 |
R202-5 | 481.95 | 0.92 | 481.95 | 0.31 |
RC105-5 | 528.75 | 2.68 | 528.75 | 0.37 |
RC204-5 | 505.65 | 0.36 | 505.65 | 0.24 |
C101-10 | 786.21 | 12.42 | 786.21 | 0.25 |
C202-10 | 747.82 | 9.62 | 747.82 | 0.32 |
R102-10 | 948.46 | 3.75 | 948.46 | 0.25 |
R201-10 | 519.27 | 3.36 | 519.27 | 0.36 |
RC102-10 | 1 029.88 | 7.51 | 1 029.88 | 0.40 |
RC201-10 | 774.00 | 9.43 | 774.00 | 0.38 |
C103-15 | 775.35 | 166.83 | 775.35 | 0.38 |
C202-15 | 1 035.89 | 15.77 | 1 035.89 | 0.44 |
R102-15 | 993.78 | 85.90 | 993.78 | 0.40 |
R202-15 | 1 232.72 | 725.03 | 1 232.72 | 0.47 |
RC103-15 | 1 032.95 | 649.11 | 1 032.95 | 0.40 |
RC202-15 | 1 030.90 | 8.57 | 1 030.90 | 0.78 |
Tab. 4 Experimental results of small-scale examples
算例 | CPLEX | ACO算法 | ||
---|---|---|---|---|
Z/元 | t/s | Z/元 | t/s | |
平均值 | 94.70 | 0.36 | ||
C101-5 | 719.14 | 2.31 | 719.14 | 0.19 |
C206-5 | 535.05 | 0.87 | 535.05 | 0.32 |
R104-5 | 485.18 | 1.45 | 485.18 | 0.26 |
R202-5 | 481.95 | 0.92 | 481.95 | 0.31 |
RC105-5 | 528.75 | 2.68 | 528.75 | 0.37 |
RC204-5 | 505.65 | 0.36 | 505.65 | 0.24 |
C101-10 | 786.21 | 12.42 | 786.21 | 0.25 |
C202-10 | 747.82 | 9.62 | 747.82 | 0.32 |
R102-10 | 948.46 | 3.75 | 948.46 | 0.25 |
R201-10 | 519.27 | 3.36 | 519.27 | 0.36 |
RC102-10 | 1 029.88 | 7.51 | 1 029.88 | 0.40 |
RC201-10 | 774.00 | 9.43 | 774.00 | 0.38 |
C103-15 | 775.35 | 166.83 | 775.35 | 0.38 |
C202-15 | 1 035.89 | 15.77 | 1 035.89 | 0.44 |
R102-15 | 993.78 | 85.90 | 993.78 | 0.40 |
R202-15 | 1 232.72 | 725.03 | 1 232.72 | 0.47 |
RC103-15 | 1 032.95 | 649.11 | 1 032.95 | 0.40 |
RC202-15 | 1 030.90 | 8.57 | 1 030.90 | 0.78 |
算例 | ACO | HACO-I | HACO-II | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
best/元 | Ave./元 | t/s | best/元 | ΔZ/% | Ave./元 | t/s | best/元 | ΔZ/% | Ave./元 | t/s | |
C101 | 2 586.4 | 2 607.0 | 16.9 | 2 574.6 | -0.46 | 2 575.1 | 65.0 | 2 580.5 | -0.23 | 2 581.0 | 57.5 |
C201 | 1 502.4 | 1 568.9 | 18.4 | 1 494.6 | -0.52 | 1 512.5 | 57.4 | 1 496.6 | -0.39 | 1 521.3 | 81.7 |
R101 | 3 625.8 | 3 778.5 | 18.9 | 3 603.3 | -0.62 | 3 702.6 | 77.2 | 3 613.4 | -0.34 | 3 728.2 | 88.7 |
R201 | 1 109.1 | 1 118.2 | 22.6 | 1 099.6 | -0.86 | 1 102.3 | 42.2 | 1 092.2 | -1.52 | 1 108.9 | 33.3 |
RC101 | 3 376.7 | 3 420.1 | 23.0 | 3 360.6 | -0.48 | 3 373.8 | 107.2 | 3 242.3 | -3.98 | 3 358.4 | 123.5 |
RC201 | 1 284.7 | 1 307.7 | 30.1 | 1 276.7 | -0.62 | 1 250.0 | 79.7 | 1 267.9 | -1.31 | 1 278.7 | 87.4 |
Tab. 5 Experimental results of large-scale examples
算例 | ACO | HACO-I | HACO-II | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
best/元 | Ave./元 | t/s | best/元 | ΔZ/% | Ave./元 | t/s | best/元 | ΔZ/% | Ave./元 | t/s | |
C101 | 2 586.4 | 2 607.0 | 16.9 | 2 574.6 | -0.46 | 2 575.1 | 65.0 | 2 580.5 | -0.23 | 2 581.0 | 57.5 |
C201 | 1 502.4 | 1 568.9 | 18.4 | 1 494.6 | -0.52 | 1 512.5 | 57.4 | 1 496.6 | -0.39 | 1 521.3 | 81.7 |
R101 | 3 625.8 | 3 778.5 | 18.9 | 3 603.3 | -0.62 | 3 702.6 | 77.2 | 3 613.4 | -0.34 | 3 728.2 | 88.7 |
R201 | 1 109.1 | 1 118.2 | 22.6 | 1 099.6 | -0.86 | 1 102.3 | 42.2 | 1 092.2 | -1.52 | 1 108.9 | 33.3 |
RC101 | 3 376.7 | 3 420.1 | 23.0 | 3 360.6 | -0.48 | 3 373.8 | 107.2 | 3 242.3 | -3.98 | 3 358.4 | 123.5 |
RC201 | 1 284.7 | 1 307.7 | 30.1 | 1 276.7 | -0.62 | 1 250.0 | 79.7 | 1 267.9 | -1.31 | 1 278.7 | 87.4 |
1 | 方凯. 我国农产品冷链物流的发展问题研究——基于绿色供应链的农产品冷链物流效率的实证分析[D]. 武汉:华中农业大学, 2013:39-55. |
FANG K. The study on the development of agricultural products cold chain logistics—empirical analysis of agricultural products cold chain logistics efficiency based on green supply chain[D]. Wuhan: Huazhong Agricultural University, 2013:39-55. | |
2 | 刘全明. 新旧能源物流汽车替代过程中的博弈和效益优化仿真研究[D]. 北京: 北京交通大学, 2020:29-54. |
LIU Q M. The game and benefit optimization simulation in replacement process of new and old energy logistics vehicles[D]. Beijing: Beijing Jiaotong University, 2020: 29-54. | |
3 | DANTZIG G B, RAMSER J H. The truck dispatching problem[J]. Management Science, 1959, 6(1):80-91. 10.1287/mnsc.6.1.80 |
4 | DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41. 10.1109/3477.484436 |
5 | REED M, YIANNAKOU A, EVERING R. An ant colony algorithm for the multi-compartment vehicle routing problem[J]. Applied Soft Computing, 2014, 15:169-176. 10.1016/j.asoc.2013.10.017 |
6 | LI Y B, SOLEIMANI H, ZOHAL M. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives[J]. Journal of Cleaner Production, 2019, 227:1161-1172. 10.1016/j.jclepro.2019.03.185 |
7 | GUO N, QIAN B, HU R, et al. A hybrid ant colony optimization algorithm for multi-compartment vehicle routing problem[J]. Complexity, 2020, 2020: No.8839526. 10.1155/2020/8839526 |
8 | MUTAR M L, BURHANUDDIN M A, HAMEED A S, et al. An efficient improvement of ant colony system algorithm for handling capacity vehicle routing problem[J]. International Journal of Industrial Engineering Computations, 2020, 11(4):549-564. |
9 | OSVALD A, STIRN L Z. A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food[J]. Journal of Food Engineering, 2008, 85(2):285-295. 10.1016/j.jfoodeng.2007.07.008 |
10 | AMORIM P, PARRAGH S N, SPERANDIO F, et al. A rich vehicle routing problem dealing with perishable food: a case study[J]. TOP, 2014, 22(2):489-508. 10.1007/s11750-012-0266-4 |
11 | ABDI A, ABDI A, AKBARPOUR N, et al. Innovative approaches to design and address green supply chain network with simultaneous pick-up and split delivery[J]. Journal of Cleaner Production, 2020, 250: No.119437. 10.1016/j.jclepro.2019.119437 |
12 | ZULVIA F E, KUO R J, NUGROHO D Y. A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products[J]. Journal of Cleaner Production, 2020, 242: No.118428. 10.1016/j.jclepro.2019.118428 |
13 | LI D L, CAO Q, ZUO M, et al. Optimization of green fresh food logistics with heterogeneous fleet vehicle route problem by improved genetic algorithm[J]. Sustainability, 2020, 12(5): No.1946. 10.3390/su12051946 |
14 | SCHNEIDER M, STENGER A, GOEKE D. The electric vehicle-routing problem with time windows and recharging stations[J]. Transportation Science, 2014, 48(4):500-520. 10.1287/trsc.2013.0490 |
15 | GOEKE D, SCHNEIDER M. Routing a mixed fleet of electric and conventional vehicles[J]. European Journal of Operational Research, 2015, 245(1):81-99. 10.1016/j.ejor.2015.01.049 |
16 | 揭婉晨,杨珺,杨超. 多车型电动汽车车辆路径问题的分支定价算法研究[J]. 系统工程理论与实践, 2016, 36(7):1795-1805. 10.12011/1000-6788(2016)07-1795-11 |
JIE W C, YANG J, YANG C. Branch-and-price algorithm for heterogeneous electric vehicle routing problem[J]. Systems Engineering—Theory & Practice, 2016, 36(7):1795-1805. 10.12011/1000-6788(2016)07-1795-11 | |
17 | ÇATAY B, KESKIN M. The impact of quick charging stations on the route planning of electric vehicles[C]// Proceedings of the 2017 IEEE Symposium on Computers and Communications. Piscataway: IEEE, 2017:152-157. 10.1109/iscc.2017.8024521 |
18 | ZHANG S, GAJPAL Y, APPADOO S S, et al. Electric vehicle routing problem with recharging stations for minimizing energy consumption[J]. International Journal of Production Economics, 2018, 203:404-413. 10.1016/j.ijpe.2018.07.016 |
19 | MACRINA G, DI PUGLIA PUGLIESE L, GUERRIERO F, et al. The green mixed fleet vehicle routing problem with partial battery recharging and time windows[J]. Computers and Operations Research, 2019, 101:183-199. 10.1016/j.cor.2018.07.012 |
20 | KESKIN M, AKHAVAN-TABATABAEI R, ÇATAY B. Electric vehicle routing problem with time windows and stochastic waiting times at recharging stations[C]// Proceedings of the 2019 Winter Simulation Conference. Piscataway: IEEE, 2019:1649-1659. 10.1109/wsc40007.2019.9004766 |
21 | KARAKATIČ S. Optimizing nonlinear charging times of electric vehicle routing with genetic algorithm[J]. Expert Systems with Applications, 2021, 164: No.114039. 10.1016/j.eswa.2020.114039 |
22 | ELSHAER R, AWAD H. A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants[J]. Computers and Industrial Engineering, 2020, 140: No.106242. 10.1016/j.cie.2019.106242 |
23 | BELL J E, McMULLEN P R. Ant colony optimization techniques for the vehicle routing problem[J]. Advanced Engineering Informatics, 2004, 18(1):41-48. 10.1016/j.aei.2004.07.001 |
24 | MAVROVOUNIOTIS M, ELLINAS G, POLYCARPOU M. Ant colony optimization for the electric vehicle routing problem[C]// Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2018:1234-1241. 10.1109/ssci.2018.8628831 |
25 | 刘志硕,申金升,柴跃廷. 一种求解车辆路径问题的混合多蚁群算法(英文)[J]. 系统仿真学报, 2007, 17(15):3513-3520. 10.3969/j.issn.1004-731X.2007.15.037 |
LIU Z S, SHEN J S, CHAI Y T. Hybrid multiple ant colonies algorithm for capacitated vehicle routing problem[J]. Journal of System Simulation, 2007, 19(15):3513-3520. 10.3969/j.issn.1004-731X.2007.15.037 | |
26 | YU B, YANG Z Z, YAO B Z. An improved ant colony optimization for vehicle routing problem[J]. European Journal of Operational Research, 2009, 196(1):171-176. 10.1016/j.ejor.2008.02.028 |
27 | STÜTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer Systems, 2000, 16(8):889-914. 10.1016/s0167-739x(00)00043-1 |
28 | LIN S. Computer solutions of the traveling salesman problem[J]. Bell System Technical Journal, 1965, 44(10):2245-2269. 10.1002/j.1538-7305.1965.tb04146.x |
29 | LIN S, KERNIGHAN B W. An effective heuristic algorithm for the TS[J]. Operational Research, 1973, 21(2):498-516. 10.1287/opre.21.2.498 |
30 | BARBAROSOGLU G, OZGUR D. A tabu search algorithm for the vehicle routing problem[J]. Computers and Operations Research, 1999, 26(3):255-270. 10.1016/s0305-0548(98)00047-1 |
31 | BALSEIRO S R, LOISEAU I, RAMONET J. An ant colony algorithm hybridized with insertion heuristics for the time dependent vehicle routing problem with time windows[J]. Computers and Operations Research, 2011, 38(6): 954-966. 10.1016/j.cor.2010.10.011 |
32 | KESKIN M, ÇATAY B. Partial recharge strategies for the electric vehicle routing problem with time windows[J]. Transportation Research Part C: Emerging Technologies, 2016, 65:111-127. 10.1016/j.trc.2016.01.013 |
33 | SOLOMON M M. Algorithms for the vehicle routing and scheduling problems with time window constraints[J]. Operations Research, 1987, 35(2):254-265. 10.1287/opre.35.2.254 |
[1] | Jianqiang LI, Zhou HE. Hybrid NSGA-Ⅱ for vehicle routing problem with multi-trip pickup and delivery [J]. Journal of Computer Applications, 2024, 44(4): 1187-1194. |
[2] | Jian SUN, Baoquan MA, Zhuiwei WU, Xiaohuan YANG, Tao WU, Pan CHEN. Joint optimization of UAV swarm path planning and task allocation balance in earthquake scenarios [J]. Journal of Computer Applications, 2024, 44(10): 3232-3239. |
[3] | Maozu GUO, Yazhe ZHANG, Lingling ZHAO. Electric vehicle charging station siting method based on spatial semantics and individual activities [J]. Journal of Computer Applications, 2023, 43(9): 2819-2827. |
[4] | Jian LIN, Jingxuan YE, Wenwen LIU, Xiaowen SHAO. Multimodal differential evolution algorithm for solving capacitated vehicle routing problem [J]. Journal of Computer Applications, 2023, 43(7): 2248-2254. |
[5] | Zhouhua ZHU, Qi QI. Automatic detection and recognition of electric vehicle helmet based on improved YOLOv5s [J]. Journal of Computer Applications, 2023, 43(4): 1291-1296. |
[6] | Jiahao ZHU, Wei ZHENG, Fengyu YANG, Xin FAN, Peng XIAO. Software quality prediction based on back propagation neural network optimized by ant colony optimization algorithm [J]. Journal of Computer Applications, 2023, 43(11): 3568-3573. |
[7] | Zhihao XIAO, Zhihua HU, Lin ZHU. Hybrid adaptive large neighborhood search algorithm for solving time-dependent vehicle routing problem in cold chain logistics [J]. Journal of Computer Applications, 2022, 42(9): 2926-2935. |
[8] | Shuning HAN, Min XU, Xueshi DONG, Qing LIN, Fanfan SHEN. Hybrid ITÖ algorithm for multi-scale colored traveling salesman problem [J]. Journal of Computer Applications, 2022, 42(3): 695-700. |
[9] | Rongrong DAI, Honghui LI, Xueliang FU. Data center flow scheduling mechanism based on differential evolution and ant colony optimization algorithm [J]. Journal of Computer Applications, 2022, 42(12): 3863-3869. |
[10] | Yu XU, Yunyou ZHU, Xiao LIU, Yuting DENG, Yong LIAO. Multi-objective routing optimization of electric power material distribution based on deep reinforcement learning [J]. Journal of Computer Applications, 2022, 42(10): 3252-3258. |
[11] | LI Kairong, LIU Shuang, HU Qianqian, TANG Yiyuan. Improved ant colony optimization algorithm for path planning based on turning angle constraint [J]. Journal of Computer Applications, 2021, 41(9): 2560-2568. |
[12] | LI Mengmeng, QIN Wei, LIU Yi, DIAO Xingchun. Hybrid ant colony optimization algorithm with brain storm optimization [J]. Journal of Computer Applications, 2021, 41(8): 2412-2417. |
[13] | LI Jin, WANG Feng, YANG Shenyu. Freight routing optimization model and algorithm of battery-swapping electric vehicle [J]. Journal of Computer Applications, 2021, 41(6): 1792-1798. |
[14] | WEI Mingyan, CHEN Yu, ZHANG Liang. Coevolutionary ant colony optimization algorithm for mixed-variable optimization problem [J]. Journal of Computer Applications, 2021, 41(5): 1412-1418. |
[15] | ZHOU Meiling, CHEN Huaili. Fuzzy multi-objective charging scheduling algorithm for electric vehicle based on load balance [J]. Journal of Computer Applications, 2021, 41(4): 1192-1198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||