Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (12): 3933-3940.DOI: 10.11772/j.issn.1001-9081.2022111687
• Multimedia computing and computer simulation • Previous Articles Next Articles
Lei LIU1, Peng WU1(), Kai XIE1,2, Beizhi CHENG1, Guanqun SHENG3
Received:
2022-11-10
Revised:
2023-05-23
Accepted:
2023-05-29
Online:
2023-07-26
Published:
2023-12-10
Contact:
Peng WU
About author:
LIU Lei, born in 2002. His research interests include image processing,artificial intelligence.Supported by:
通讯作者:
伍鹏
作者简介:
刘磊(2002—),男,山东青岛人,主要研究方向:图像处理、人工智能基金资助:
CLC Number:
Lei LIU, Peng WU, Kai XIE, Beizhi CHENG, Guanqun SHENG. Parking space detection method based on self-supervised learning HOG prediction auxiliary task[J]. Journal of Computer Applications, 2023, 43(12): 3933-3940.
刘磊, 伍鹏, 谢凯, 程贝芝, 盛冠群. 自监督学习HOG预测辅助任务下的车位检测方法[J]. 《计算机应用》唯一官方网站, 2023, 43(12): 3933-3940.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022111687
配置项 | 详情 |
---|---|
CPU | AMD Ryzen 7 5800H with Radeon Graphics |
内存 | 16 GB |
GPU | NVIDIA GeForce RTX 3060 Laptop GPU |
操作系统 | Windows 10 |
软件 | Python 3.8,OpenCV,PyTorch 1.11.0+cu115 |
Tab. 1 Computer hardware and software configuration
配置项 | 详情 |
---|---|
CPU | AMD Ryzen 7 5800H with Radeon Graphics |
内存 | 16 GB |
GPU | NVIDIA GeForce RTX 3060 Laptop GPU |
操作系统 | Windows 10 |
软件 | Python 3.8,OpenCV,PyTorch 1.11.0+cu115 |
模型 | C1 | C2 | ||
---|---|---|---|---|
准确率 | F1分数 | 准确率 | F1分数 | |
模型1 | 97.54 | 97.44 | 97.99 | 98.16 |
模型2 | 99.24 | 99.22 | 98.09 | 98.23 |
Tab. 2 Comparison of detection performance of two models under C1 and C2 conditions
模型 | C1 | C2 | ||
---|---|---|---|---|
准确率 | F1分数 | 准确率 | F1分数 | |
模型1 | 97.54 | 97.44 | 97.99 | 98.16 |
模型2 | 99.24 | 99.22 | 98.09 | 98.23 |
注意力 | 测试方法 | 准确率/% | F1分数/% | 参数量/103 | 计算量/103 |
---|---|---|---|---|---|
SE | C1 | 98.47 | 97.58 | 412.672 | 431 447 |
C2 | 97.72 | 97.91 | |||
CSE | C1 | 99.24 | 99.22 | 404.382 | 431 442 |
C2 | 98.09 | 98.23 |
Tab.3 Comparison of effects of two attention mechanisms applying on proposed model under C1 and C2 conditions
注意力 | 测试方法 | 准确率/% | F1分数/% | 参数量/103 | 计算量/103 |
---|---|---|---|---|---|
SE | C1 | 98.47 | 97.58 | 412.672 | 431 447 |
C2 | 97.72 | 97.91 | |||
CSE | C1 | 99.24 | 99.22 | 404.382 | 431 442 |
C2 | 98.09 | 98.23 |
测试方法 | 模型 | 准确率 | 精确度 | 召回率 | F1分数 |
---|---|---|---|---|---|
C1 | VGG16 | 96.35 | 99.56 | 92.93 | 96.12 |
ResNet18 | 96.08 | 99.80 | 92.15 | 95.82 | |
MCNN | 96.33 | 98.72 | 93.63 | 96.11 | |
RepVGG | 97.63 | 98.64 | 96.46 | 97.53 | |
mAlexNet | 96.53 | 99.07 | 94.34 | 96.64 | |
本文模型 | 99.24 | 99.67 | 98.78 | 99.22 | |
C2 | VGG16 | 97.21 | 98.29 | 96.55 | 97.41 |
ResNet18 | 97.81 | 99.28 | 96.67 | 97.95 | |
MCNN | 97.76 | 98.59 | 96.68 | 97.62 | |
RepVGG | 97.82 | 98.15 | 97.82 | 97.98 | |
mAlexNet | 97.29 | 97.60 | 97.21 | 97.40 | |
本文模型 | 98.09 | 98.87 | 97.60 | 98.23 |
Tab.4 Comparison of detection performance of different models under C1 and C2 conditions
测试方法 | 模型 | 准确率 | 精确度 | 召回率 | F1分数 |
---|---|---|---|---|---|
C1 | VGG16 | 96.35 | 99.56 | 92.93 | 96.12 |
ResNet18 | 96.08 | 99.80 | 92.15 | 95.82 | |
MCNN | 96.33 | 98.72 | 93.63 | 96.11 | |
RepVGG | 97.63 | 98.64 | 96.46 | 97.53 | |
mAlexNet | 96.53 | 99.07 | 94.34 | 96.64 | |
本文模型 | 99.24 | 99.67 | 98.78 | 99.22 | |
C2 | VGG16 | 97.21 | 98.29 | 96.55 | 97.41 |
ResNet18 | 97.81 | 99.28 | 96.67 | 97.95 | |
MCNN | 97.76 | 98.59 | 96.68 | 97.62 | |
RepVGG | 97.82 | 98.15 | 97.82 | 97.98 | |
mAlexNet | 97.29 | 97.60 | 97.21 | 97.40 | |
本文模型 | 98.09 | 98.87 | 97.60 | 98.23 |
模型 | 准确率 | 轻度遮挡 | 中度遮挡 | 重度遮挡 |
---|---|---|---|---|
MCNN | 89.93 | 93.24 | 82.33 | 75.15 |
mAlexNet | 88.05 | 90.43 | 84.53 | 77.41 |
RepVGG | 92.03 | 95.63 | 89.58 | 84.48 |
本文模型 | 97.49 | 97.96 | 92.28 | 88.63 |
Tab.5 Accuracy comparison of different models underdifferent occlusion conditions on test set
模型 | 准确率 | 轻度遮挡 | 中度遮挡 | 重度遮挡 |
---|---|---|---|---|
MCNN | 89.93 | 93.24 | 82.33 | 75.15 |
mAlexNet | 88.05 | 90.43 | 84.53 | 77.41 |
RepVGG | 92.03 | 95.63 | 89.58 | 84.48 |
本文模型 | 97.49 | 97.96 | 92.28 | 88.63 |
模型 | 准确率 | 精确度 | 召回率 | F1分数 |
---|---|---|---|---|
MCNN | 75.03 | 75.49 | 80.95 | 78.12 |
RepVGG | 79.83 | 81.16 | 83.65 | 82.38 |
mAlexNet | 78.95 | 78.91 | 83.37 | 81.18 |
本文模型 | 82.54 | 82.19 | 87.26 | 84.64 |
Tab.6 Comparison of detection performance of different models on LC dataset
模型 | 准确率 | 精确度 | 召回率 | F1分数 |
---|---|---|---|---|
MCNN | 75.03 | 75.49 | 80.95 | 78.12 |
RepVGG | 79.83 | 81.16 | 83.65 | 82.38 |
mAlexNet | 78.95 | 78.91 | 83.37 | 81.18 |
本文模型 | 82.54 | 82.19 | 87.26 | 84.64 |
模型 | 计算量/106 | 参数量/104 | 推理时间/ms |
---|---|---|---|
VGG16 | 15 483.86 | 13 836 | 6.49 |
ResNet18 | 1 819.07 | 1 169 | 2.90 |
MCNN | 24.40 | 6 | 1.84 |
RepVGG | 1 362.03 | 703 | 2.69 |
mAlexNet | 21.22 | 3 | 1.27 |
本文模型 | 431.44 | 40 | 3.96 |
Tab.7 Comparisons of computational cost, parameter number and reasoning time of different models
模型 | 计算量/106 | 参数量/104 | 推理时间/ms |
---|---|---|---|
VGG16 | 15 483.86 | 13 836 | 6.49 |
ResNet18 | 1 819.07 | 1 169 | 2.90 |
MCNN | 24.40 | 6 | 1.84 |
RepVGG | 1 362.03 | 703 | 2.69 |
mAlexNet | 21.22 | 3 | 1.27 |
本文模型 | 431.44 | 40 | 3.96 |
1 | DE ALMEIDA P R L, OLIVEIRA L S, BRITTO A C, Jr, et al. PKLot — a robust dataset for parking lot classification[J]. Expert Systems with Applications, 2015, 42(11):4937-4949. 10.1016/j.eswa.2015.02.009 |
2 | 黄伟杰,张希,赵柏暄,等. 基于视觉的停车场车位检测与分类算法[J]. 计算机系统应用, 2022, 31(3):234-240. |
HUANG W J, ZHANG X, ZHAO B X, et al. Vision-based parking space detection and classification algorithm[J]. Computer Systems and Applications, 2022, 31(3):234-240. | |
3 | JERMSURAWONG J, AHSAN U, HAIDAR A, et al. One-day long statistical analysis of parking demand by using single-camera vacancy detection[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 14(2): 33-44. 10.1016/s1570-6672(13)60136-1 |
4 | 安旭骁,邓洪敏,史兴宇. 基于迷你卷积神经网络的停车场空车位检测方法[J]. 计算机应用, 2018, 38(4): 935-938. 10.11772/j.issn.1001-9081.2017092362 |
AN X X, DENG H M, SHI X Y. Parking lot space detection method based on mini convolutional neural network[J]. Journal of Computer Applications, 2018, 38(4): 935-938. 10.11772/j.issn.1001-9081.2017092362 | |
5 | AMATO G, CARRARA F, FALCHI F, et al. Deep learning for decentralized parking lot occupancy detection [J]. Expert Systems with Applications, 2017, 72: 327-334. 10.1016/j.eswa.2016.10.055 |
6 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems — Volume 1. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. |
7 | 申铉京,刘同壮,王玉,等. 基于卷积网络结构重参数化的车位状态检测算法[J]. 吉林大学学报(工学版), 2022, 52(12): 2898-2905. |
SHEN X J, LIU T Z, WANG Y, et al. Detection algorithm for parking space status based on of convolution network structural re-parameterization[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(12): 2898-2905. | |
8 | DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13728-13737. 10.1109/cvpr46437.2021.01352 |
9 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10) [2021-04-20].. |
10 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. |
11 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition — Volume 1. Piscataway: IEEE, 2005: 886-893. 10.1109/cvpr.2005.4 |
12 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
13 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
14 | HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. (2017-04-17) [2021-06-05].. 10.48550/arXiv.1704.04861 |
15 | SANDLER M, HOEARD A, ZHU M, et al. Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation[EB/OL]. (2018-01-13) [2021-06-20]. . 10.1109/cvpr.2018.00474 |
16 | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. 10.1109/iccv.2019.00140 |
17 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:2818-2826. 10.1109/cvpr.2016.308 |
18 | HE K, FAN H, WU Y, et al. Momentum contrast for unsupervised visual representation learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9726-9735. 10.1109/cvpr42600.2020.00975 |
19 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. |
20 | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers). Stroudsburg, PA, ACL, 2019: 4171-4186. 10.18653/v1/n18-2 |
21 | HE K, CHEN X, XIE S, et al. Masked autoencoders are scalable vision learners[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 15979-15988. 10.1109/cvpr52688.2022.01553 |
22 | WEI C, FAN H, XIE S, et al. Masked feature prediction for self-supervised visual pre-training [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14648-14658. 10.1109/cvpr52688.2022.01426 |
23 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03) [2022-03-21].. |
24 | MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer [EB/OL]. (2022-03-04) [2022-05-16].. 10.1109/cvpr.2019.00941 |
25 | TAN M, LE Q. EfficientNetV2: smaller models and faster training[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 10096-10106. |
26 | CUI C, GAO T, WEI S, et al. PP-LCNet: a lightweight CPU convolutional neural network[EB/OL]. (2021-09-17) [2022-05-12].. |
[1] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[2] | Jiong WANG, Taotao TANG, Caiyan JIA. PAGCL: positive augmentation graph contrastive learning recommendation method without negative sampling [J]. Journal of Computer Applications, 2024, 44(5): 1485-1492. |
[3] | Guijin HAN, Xinyuan ZHANG, Wentao ZHANG, Ya HUANG. Self-supervised image registration algorithm based on multi-feature fusion [J]. Journal of Computer Applications, 2024, 44(5): 1597-1604. |
[4] | Rong HUANG, Junjie SONG, Shubo ZHOU, Hao LIU. Image aesthetic quality evaluation method based on self-supervised vision Transformer [J]. Journal of Computer Applications, 2024, 44(4): 1269-1276. |
[5] | Yuning ZHANG, Abudukelimu ABULIZI, Tisheng MEI, Chun XU, Maierdana MAIMAITIREYIMU, Halidanmu ABUDUKELIMU, Yutao HOU. Anomaly detection method for skeletal X-ray images based on self-supervised feature extraction [J]. Journal of Computer Applications, 2024, 44(1): 175-181. |
[6] | Shengwei MA, Ruizhang HUANG, Lina REN, Chuan LIN. Structured deep text clustering model based on multi-layer semantic fusion [J]. Journal of Computer Applications, 2023, 43(8): 2364-2369. |
[7] | Caitong BAI, Xiaolong CUI, Huiji ZHENG, Ai LI. Robust speech recognition technology based on self-supervised knowledge transfer [J]. Journal of Computer Applications, 2022, 42(10): 3217-3223. |
[8] | DAI Yurou, YANG Qing, ZHANG Fengli, ZHOU Fan. Trajectory prediction model of social network users based on self-supervised learning [J]. Journal of Computer Applications, 2021, 41(9): 2545-2551. |
[9] | WU Chongshu, LIN Lin, XUE Yunjing, SHI Peng. Hierarchical segmentation of pathological images based on self-supervised learning [J]. Journal of Computer Applications, 2020, 40(6): 1856-1862. |
[10] | CHEN Lichao, ZHANG Lei, CAO Jianfang, ZHANG Rui. Vehicle classification based on HOG-C CapsNet in traffic surveillance scenarios [J]. Journal of Computer Applications, 2020, 40(10): 2881-2889. |
[11] | HAN Guijin. Part appearance model based on support vector machine and fuzzy k-means algorithm [J]. Journal of Computer Applications, 2015, 35(7): 2043-2046. |
[12] | DONG Zhicong, LI Fuhai, LIU Shaoxiong. Human detection algorithm with variable rotation angle [J]. Journal of Computer Applications, 2015, 35(6): 1785-1790. |
[13] | ZHU Suyang, HUI Haotian, QIAN Longhua, ZHANG Min. Family relation extraction from Wikipedia by self-supervised learning [J]. Journal of Computer Applications, 2015, 35(4): 1013-1016. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||