Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (1): 292-299.DOI: 10.11772/j.issn.1001-9081.2023010048
• Multimedia computing and computer simulation • Previous Articles
Hao CHEN1, Zhenping XIA1(), Cheng CHENG1, Xing LIN-LI2, Bowen ZHANG1
Received:
2023-01-17
Revised:
2023-04-12
Accepted:
2023-04-13
Online:
2023-06-06
Published:
2024-01-10
Contact:
Zhenping XIA
About author:
CHEN Hao, born in 2000, M. S. candidate. His research interests include deep learning, digital image processing.Supported by:
通讯作者:
夏振平
作者简介:
陈豪(2000—),男,四川广安人,硕士研究生,主要研究方向:深度学习、数字图像处理;基金资助:
CLC Number:
Hao CHEN, Zhenping XIA, Cheng CHENG, Xing LIN-LI, Bowen ZHANG. Lightweight image super-resolution reconstruction network based on Transformer-CNN[J]. Journal of Computer Applications, 2024, 44(1): 292-299.
陈豪, 夏振平, 程成, 林李兴, 张博文. 基于Transformer-CNN的轻量级图像超分辨率重建网络[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 292-299.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023010048
深度 | 宽度 | 参数量/103 | 乘加量/109 | PSNR/dB | SSIM |
---|---|---|---|---|---|
2 | 32 | 109 | 14.02 | 30.14 | 0.830 8 |
2 | 40 | 161 | 20.84 | 30.18 | 0.831 6 |
4 | 32 | 194 | 24.91 | 30.31 | 0.834 8 |
4 | 40 | 290 | 37.39 | 30.40 | 0.8366 |
Tab. 1 Performance of networks with different widths and depths
深度 | 宽度 | 参数量/103 | 乘加量/109 | PSNR/dB | SSIM |
---|---|---|---|---|---|
2 | 32 | 109 | 14.02 | 30.14 | 0.830 8 |
2 | 40 | 161 | 20.84 | 30.18 | 0.831 6 |
4 | 32 | 194 | 24.91 | 30.31 | 0.834 8 |
4 | 40 | 290 | 37.39 | 30.40 | 0.8366 |
模块 | 参数量/103 | 乘加量/109 | PSNR/dB | SSIM |
---|---|---|---|---|
LTB | 240 | 30.95 | 31.98 | 0.892 6 |
LTB-IRB | 293 | 37.68 | 32.17 | 0.894 9 |
LTB-MIRB | 290 | 37.39 | 32.29 | 0.8954 |
Tab. 2 Performance of networks with different modules
模块 | 参数量/103 | 乘加量/109 | PSNR/dB | SSIM |
---|---|---|---|---|
LTB | 240 | 30.95 | 31.98 | 0.892 6 |
LTB-IRB | 293 | 37.68 | 32.17 | 0.894 9 |
LTB-MIRB | 290 | 37.39 | 32.29 | 0.8954 |
激活函数 | Set5 | Set14 | BSD100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
ReLU | 32.19 | 0.894 1 | 28.56 | 0.780 6 | 27.55 | 0.735 1 | 26.01 | 0.783 7 | 30.37 | 0.907 2 |
LeakyReLU | 32.28 | 0.895 1 | 28.55 | 0.780 8 | 27.54 | 0.735 4 | 26.06 | 0.783 5 | 30.43 | 0.907 9 |
h-swish | 32.26 | 0.895 0 | 28.58 | 0.7816 | 27.55 | 0.735 6 | 26.07 | 0.784 2 | 30.38 | 0.907 1 |
GELU | 32.29 | 0.8954 | 28.59 | 0.781 3 | 27.56 | 0.7360 | 26.09 | 0.7845 | 30.46 | 0.9081 |
Tab. 3 Quantitative comparison of different activation functions on five benchmark datasets
激活函数 | Set5 | Set14 | BSD100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | |
ReLU | 32.19 | 0.894 1 | 28.56 | 0.780 6 | 27.55 | 0.735 1 | 26.01 | 0.783 7 | 30.37 | 0.907 2 |
LeakyReLU | 32.28 | 0.895 1 | 28.55 | 0.780 8 | 27.54 | 0.735 4 | 26.06 | 0.783 5 | 30.43 | 0.907 9 |
h-swish | 32.26 | 0.895 0 | 28.58 | 0.7816 | 27.55 | 0.735 6 | 26.07 | 0.784 2 | 30.38 | 0.907 1 |
GELU | 32.29 | 0.8954 | 28.59 | 0.781 3 | 27.56 | 0.7360 | 26.09 | 0.7845 | 30.46 | 0.9081 |
算法 | 参数量/103 | Set5 | Set14 | BSD100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 33.66 | 0.929 9 | 30.24 | 0.868 8 | 29.56 | 0.843 1 | 26.88 | 0.840 3 | 30.80 | 0.933 9 |
SRCNN[ | 8 | 36.66 | 0.954 2 | 32.45 | 0.906 7 | 31.36 | 0.887 9 | 29.50 | 0.894 6 | 35.60 | 0.966 3 |
FSRCNN[ | 13 | 37.00 | 0.955 8 | 32.63 | 0.908 8 | 31.53 | 0.892 0 | 29.88 | 0.902 0 | 36.67 | 0.971 0 |
DRCN[ | 1 774 | 37.63 | 0.958 8 | 33.04 | 0.911 8 | 31.85 | 0.894 2 | 30.75 | 0.913 3 | 37.55 | 0.973 2 |
LapSRN[ | 251 | 37.52 | 0.959 1 | 32.99 | 0.912 4 | 31.80 | 0.895 2 | 30.41 | 0.910 3 | 37.27 | 0.974 0 |
SRGAN[ | 1 370 | 33.64 | 0.917 8 | 38.05 | 0.960 7 | ||||||
SRMDNF[ | 1 511 | 37.79 | 0.960 1 | 33.32 | 0.915 9 | 32.05 | 0.898 5 | 31.33 | 0.920 4 | 38.07 | 0.976 1 |
CARN[ | 1 592 | 37.76 | 0.959 0 | 33.52 | 0.916 6 | 32.09 | 0.897 8 | 31.92 | 0.925 6 | 38.36 | 0.976 5 |
IMDN[ | 694 | 38.00 | 0.960 5 | 33.63 | 0.917 7 | 32.19 | 0.899 6 | 32.17 | 0.928 3 | 0.977 4 | |
PAN[ | 261 | 38.00 | 0.960 5 | 33.59 | 0.918 1 | 32.18 | 0.899 7 | 32.01 | 0.927 3 | 38.70 | 0.977 3 |
RFDN[ | 534 | 0.960 6 | 32.16 | 0.899 4 | 32.12 | 0.927 8 | 0.977 3 | ||||
SwinIR[ | 878 | 38.14 | 0.9611 | 33.86 | 0.9206 | 32.31 | 0.9012 | 32.76 | 0.9340 | 39.12 | 0.9783 |
LHNTC | 277 | 38.04 | 0.960 6 | 33.67 | 32.19 | 0.899 8 | 32.12 | 0.927 5 |
Tab. 4 Quantitative comparison of different algorithms on five benchmark datasets with scale factor of 2
算法 | 参数量/103 | Set5 | Set14 | BSD100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 33.66 | 0.929 9 | 30.24 | 0.868 8 | 29.56 | 0.843 1 | 26.88 | 0.840 3 | 30.80 | 0.933 9 |
SRCNN[ | 8 | 36.66 | 0.954 2 | 32.45 | 0.906 7 | 31.36 | 0.887 9 | 29.50 | 0.894 6 | 35.60 | 0.966 3 |
FSRCNN[ | 13 | 37.00 | 0.955 8 | 32.63 | 0.908 8 | 31.53 | 0.892 0 | 29.88 | 0.902 0 | 36.67 | 0.971 0 |
DRCN[ | 1 774 | 37.63 | 0.958 8 | 33.04 | 0.911 8 | 31.85 | 0.894 2 | 30.75 | 0.913 3 | 37.55 | 0.973 2 |
LapSRN[ | 251 | 37.52 | 0.959 1 | 32.99 | 0.912 4 | 31.80 | 0.895 2 | 30.41 | 0.910 3 | 37.27 | 0.974 0 |
SRGAN[ | 1 370 | 33.64 | 0.917 8 | 38.05 | 0.960 7 | ||||||
SRMDNF[ | 1 511 | 37.79 | 0.960 1 | 33.32 | 0.915 9 | 32.05 | 0.898 5 | 31.33 | 0.920 4 | 38.07 | 0.976 1 |
CARN[ | 1 592 | 37.76 | 0.959 0 | 33.52 | 0.916 6 | 32.09 | 0.897 8 | 31.92 | 0.925 6 | 38.36 | 0.976 5 |
IMDN[ | 694 | 38.00 | 0.960 5 | 33.63 | 0.917 7 | 32.19 | 0.899 6 | 32.17 | 0.928 3 | 0.977 4 | |
PAN[ | 261 | 38.00 | 0.960 5 | 33.59 | 0.918 1 | 32.18 | 0.899 7 | 32.01 | 0.927 3 | 38.70 | 0.977 3 |
RFDN[ | 534 | 0.960 6 | 32.16 | 0.899 4 | 32.12 | 0.927 8 | 0.977 3 | ||||
SwinIR[ | 878 | 38.14 | 0.9611 | 33.86 | 0.9206 | 32.31 | 0.9012 | 32.76 | 0.9340 | 39.12 | 0.9783 |
LHNTC | 277 | 38.04 | 0.960 6 | 33.67 | 32.19 | 0.899 8 | 32.12 | 0.927 5 |
算法 | 参数量/103 | Set5 | Set14 | BSD100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 30.39 | 0.868 2 | 27.55 | 0.774 2 | 27.21 | 0.738 5 | 24.46 | 0.734 9 | 26.95 | 0.855 6 |
SRCNN[ | 8 | 32.75 | 0.909 0 | 29.30 | 0.821 5 | 28.41 | 0.786 3 | 26.24 | 0.798 9 | 30.48 | 0.911 7 |
FSRCNN[ | 13 | 33.18 | 0.914 0 | 29.37 | 0.824 0 | 28.53 | 0.791 0 | 26.43 | 0.808 0 | 31.10 | 0.921 0 |
DRCN[ | 1 774 | 33.82 | 0.922 6 | 29.76 | 0.831 1 | 28.80 | 0.796 3 | 27.15 | 0.827 6 | 32.24 | 0.934 3 |
LapSRN[ | 502 | 33.81 | 0.922 0 | 29.79 | 0.832 5 | 28.82 | 0.798 0 | 27.07 | 0.827 5 | 32.21 | 0.935 0 |
SRGAN[ | 1 554 | 34.41 | 28.20 | 33.54 | 0.944 8 | ||||||
SRMDNF[ | 1 528 | 34.12 | 0.925 4 | 30.04 | 0.838 2 | 28.97 | 0.802 5 | 27.57 | 0.839 8 | 33.00 | 0.940 3 |
CARN[ | 1 592 | 34.29 | 0.925 5 | 30.29 | 0.840 7 | 29.06 | 0.803 4 | 28.06 | 0.849 3 | 33.61 | 0.944 5 |
IMDN[ | 703 | 34.36 | 0.927 0 | 30.32 | 0.841 7 | 29.09 | 0.804 6 | 28.17 | 0.851 9 | 33.61 | 0.944 5 |
PAN[ | 261 | 34.40 | 0.927 1 | 30.36 | 0.842 3 | 0.805 0 | 28.11 | 0.851 1 | 33.61 | 0.944 8 | |
RFDN[ | 541 | 34.41 | 0.927 3 | 30.34 | 0.842 0 | 29.09 | 0.805 0 | 0.852 5 | 33.67 | 0.944 9 | |
SwinIR[ | 886 | 34.62 | 0.9289 | 30.54 | 0.8463 | 29.20 | 0.8082 | 28.66 | 0.8624 | 33.98 | 0.9478 |
LHNTC | 283 | 0.927 3 | 30.35 | 0.842 1 | 29.06 | 0.804 5 | 28.18 | 0.852 2 |
Tab. 5 Quantitative comparison of different algorithms on five benchmark datasets with scale factor of 3
算法 | 参数量/103 | Set5 | Set14 | BSD100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 30.39 | 0.868 2 | 27.55 | 0.774 2 | 27.21 | 0.738 5 | 24.46 | 0.734 9 | 26.95 | 0.855 6 |
SRCNN[ | 8 | 32.75 | 0.909 0 | 29.30 | 0.821 5 | 28.41 | 0.786 3 | 26.24 | 0.798 9 | 30.48 | 0.911 7 |
FSRCNN[ | 13 | 33.18 | 0.914 0 | 29.37 | 0.824 0 | 28.53 | 0.791 0 | 26.43 | 0.808 0 | 31.10 | 0.921 0 |
DRCN[ | 1 774 | 33.82 | 0.922 6 | 29.76 | 0.831 1 | 28.80 | 0.796 3 | 27.15 | 0.827 6 | 32.24 | 0.934 3 |
LapSRN[ | 502 | 33.81 | 0.922 0 | 29.79 | 0.832 5 | 28.82 | 0.798 0 | 27.07 | 0.827 5 | 32.21 | 0.935 0 |
SRGAN[ | 1 554 | 34.41 | 28.20 | 33.54 | 0.944 8 | ||||||
SRMDNF[ | 1 528 | 34.12 | 0.925 4 | 30.04 | 0.838 2 | 28.97 | 0.802 5 | 27.57 | 0.839 8 | 33.00 | 0.940 3 |
CARN[ | 1 592 | 34.29 | 0.925 5 | 30.29 | 0.840 7 | 29.06 | 0.803 4 | 28.06 | 0.849 3 | 33.61 | 0.944 5 |
IMDN[ | 703 | 34.36 | 0.927 0 | 30.32 | 0.841 7 | 29.09 | 0.804 6 | 28.17 | 0.851 9 | 33.61 | 0.944 5 |
PAN[ | 261 | 34.40 | 0.927 1 | 30.36 | 0.842 3 | 0.805 0 | 28.11 | 0.851 1 | 33.61 | 0.944 8 | |
RFDN[ | 541 | 34.41 | 0.927 3 | 30.34 | 0.842 0 | 29.09 | 0.805 0 | 0.852 5 | 33.67 | 0.944 9 | |
SwinIR[ | 886 | 34.62 | 0.9289 | 30.54 | 0.8463 | 29.20 | 0.8082 | 28.66 | 0.8624 | 33.98 | 0.9478 |
LHNTC | 283 | 0.927 3 | 30.35 | 0.842 1 | 29.06 | 0.804 5 | 28.18 | 0.852 2 |
算法 | 参数量/103 | Set5 | Set14 | BSD100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 28.42 | 0.810 4 | 26.00 | 0.702 7 | 25.96 | 0.667 5 | 23.14 | 0.657 7 | 24.89 | 0.786 6 |
SRCNN[ | 8 | 30.48 | 0.862 6 | 27.50 | 0.751 3 | 26.90 | 0.710 1 | 24.52 | 0.722 1 | 27.58 | 0.855 5 |
FSRCNN[ | 13 | 30.72 | 0.866 0 | 27.61 | 0.755 0 | 26.98 | 0.715 0 | 24.62 | 0.728 0 | 27.90 | 0.861 0 |
DRCN[ | 1 774 | 31.53 | 0.885 4 | 28.02 | 0.767 0 | 27.23 | 0.723 3 | 25.14 | 0.751 0 | 28.93 | 0.885 4 |
LapSRN[ | 502 | 31.54 | 0.885 2 | 28.09 | 0.770 0 | 27.32 | 0.727 5 | 25.21 | 0.756 2 | 29.09 | 0.890 0 |
SRGAN[ | 1 518 | 32.17 | 0.895 1 | 30.48 | 0.908 7 | ||||||
SRMDNF[ | 1 552 | 31.96 | 0.892 5 | 28.35 | 0.778 7 | 27.49 | 0.733 7 | 25.68 | 0.773 1 | 30.09 | 0.902 4 |
CARN[ | 1 592 | 32.13 | 0.893 7 | 28.60 | 0.780 6 | 27.58 | 0.734 9 | 26.07 | 0.783 7 | 30.47 | 0.908 4 |
IMDN[ | 715 | 32.21 | 0.894 8 | 28.58 | 0.781 1 | 27.56 | 0.735 3 | 26.04 | 0.783 8 | 30.45 | 0.907 5 |
PAN[ | 272 | 32.13 | 0.894 8 | 0.782 2 | 27.59 | 0.736 3 | 26.11 | 0.785 4 | 30.51 | 0.909 5 | |
RFDN[ | 550 | 32.24 | 0.895 2 | 0.781 9 | 27.57 | 0.736 0 | 26.11 | 0.785 8 | |||
SwinIR[ | 897 | 32.44 | 0.8976 | 28.77 | 0.7858 | 27.69 | 0.7406 | 26.47 | 0.7980 | 30.92 | 0.9151 |
LHNTC | 290 | 28.59 | 0.781 3 | 27.56 | 0.736 0 | 26.09 | 0.784 5 | 30.46 | 0.908 1 |
Tab. 6 Quantitative comparison of different algorithms on five benchmark datasets with scale factor of 4
算法 | 参数量/103 | Set5 | Set14 | BSD100 | Urban100 | Manga109 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
Bicubic | — | 28.42 | 0.810 4 | 26.00 | 0.702 7 | 25.96 | 0.667 5 | 23.14 | 0.657 7 | 24.89 | 0.786 6 |
SRCNN[ | 8 | 30.48 | 0.862 6 | 27.50 | 0.751 3 | 26.90 | 0.710 1 | 24.52 | 0.722 1 | 27.58 | 0.855 5 |
FSRCNN[ | 13 | 30.72 | 0.866 0 | 27.61 | 0.755 0 | 26.98 | 0.715 0 | 24.62 | 0.728 0 | 27.90 | 0.861 0 |
DRCN[ | 1 774 | 31.53 | 0.885 4 | 28.02 | 0.767 0 | 27.23 | 0.723 3 | 25.14 | 0.751 0 | 28.93 | 0.885 4 |
LapSRN[ | 502 | 31.54 | 0.885 2 | 28.09 | 0.770 0 | 27.32 | 0.727 5 | 25.21 | 0.756 2 | 29.09 | 0.890 0 |
SRGAN[ | 1 518 | 32.17 | 0.895 1 | 30.48 | 0.908 7 | ||||||
SRMDNF[ | 1 552 | 31.96 | 0.892 5 | 28.35 | 0.778 7 | 27.49 | 0.733 7 | 25.68 | 0.773 1 | 30.09 | 0.902 4 |
CARN[ | 1 592 | 32.13 | 0.893 7 | 28.60 | 0.780 6 | 27.58 | 0.734 9 | 26.07 | 0.783 7 | 30.47 | 0.908 4 |
IMDN[ | 715 | 32.21 | 0.894 8 | 28.58 | 0.781 1 | 27.56 | 0.735 3 | 26.04 | 0.783 8 | 30.45 | 0.907 5 |
PAN[ | 272 | 32.13 | 0.894 8 | 0.782 2 | 27.59 | 0.736 3 | 26.11 | 0.785 4 | 30.51 | 0.909 5 | |
RFDN[ | 550 | 32.24 | 0.895 2 | 0.781 9 | 27.57 | 0.736 0 | 26.11 | 0.785 8 | |||
SwinIR[ | 897 | 32.44 | 0.8976 | 28.77 | 0.7858 | 27.69 | 0.7406 | 26.47 | 0.7980 | 30.92 | 0.9151 |
LHNTC | 290 | 28.59 | 0.781 3 | 27.56 | 0.736 0 | 26.09 | 0.784 5 | 30.46 | 0.908 1 |
算法 | PSNR/dB | SSIM | 参数量/103 | 平均运行时间/s |
---|---|---|---|---|
RCAN[ | 26.82 | 0.808 7 | 15592 | 0.260 2 |
IMDN[ | 26.04 | 0.783 8 | 715 | 0.021 7 |
PAN[ | 26.11 | 0.785 4 | 272 | 0.021 8 |
RFDN[ | 26.11 | 0.785 8 | 550 | 0.025 1 |
SwinIR[ | 26.47 | 0.798 0 | 897 | 0.134 9 |
LHNTC | 26.09 | 0.784 5 | 290 | 0.0110 |
Tab. 7 Average running time on Urban100 dataset with scale factor of 4
算法 | PSNR/dB | SSIM | 参数量/103 | 平均运行时间/s |
---|---|---|---|---|
RCAN[ | 26.82 | 0.808 7 | 15592 | 0.260 2 |
IMDN[ | 26.04 | 0.783 8 | 715 | 0.021 7 |
PAN[ | 26.11 | 0.785 4 | 272 | 0.021 8 |
RFDN[ | 26.11 | 0.785 8 | 550 | 0.025 1 |
SwinIR[ | 26.47 | 0.798 0 | 897 | 0.134 9 |
LHNTC | 26.09 | 0.784 5 | 290 | 0.0110 |
1 | FANG J, XIAO J, WANG X, et al. Arbitrary scale super resolution network for satellite imagery [J]. China Communications, 2022, 19(8): 234-246. 10.23919/jcc.2022.08.017 |
2 | GE L, BAO W, YUAN D, et al. Edge-assisted deep video denoising and super-resolution for real-time surveillance at night [C]// Proceedings of the 28th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2022: 783-785. 10.1145/3495243.3558754 |
3 | 王一宁,赵青杉,秦品乐,等.基于轻量密集神经网络的医学图像超分辨率重建算法[J].计算机应用, 2022, 42(8): 2586-2592. 10.11772/j.issn.1001-9081.2021061093 |
WANG Y N, ZHAO Q S, QIN P L, et al. Super-resolution reconstruction algorithm of medical image based on lightweight dense neural network [J]. Journal of Computer Applications, 2022, 42(8): 2586-2592. 10.11772/j.issn.1001-9081.2021061093 | |
4 | 陈宗航,胡海龙,姚剑敏,等.基于改进生成对抗网络的单帧图像超分辨率重建[J].液晶与显示, 2021, 36(5): 705-712. 10.37188/CJLCD.2020-0250 |
CHEN Z H, HU H L, YAO J M, et al. Single frame image super-resolution reconstruction based on improved generative adversarial network [J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 705-712. 10.37188/CJLCD.2020-0250 | |
5 | DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014: 184-199. |
6 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
7 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19 |
8 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132-1140. 10.1109/cvprw.2017.151 |
9 | 黄友文,唐欣,周斌.结合双注意力和结构相似度量的图像超分辨率重建网络[J].液晶与显示, 2022, 37(3): 367-375. 10.37188/CJLCD.2021-0178 |
HUANG Y W, TANG X, ZHOU B. Image super-resolution reconstruction network with dual attention and structural similarity measure [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 367-375. 10.37188/CJLCD.2021-0178 | |
10 | AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11214. Cham: Springer, 2018: 256-272. 10.48550/arXiv.1803.08664 |
11 | HUI Z, GAO X, YANG Y, et al. Lightweight image super-resolution with information multi-distillation network [C]// Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 2024-2032. 10.1145/3343031.3351084 |
12 | LIU J, TANG J, WU G. Residual feature distillation network for lightweight image super-resolution [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12537. Cham: Springer, 2020: 41-55. |
13 | ZHANG K, DANELLJAN M, LI Y, et al. AIM 2020 challenge on efficient super-resolution: methods and results [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12537. Cham: Springer, 2020: 5-40. |
14 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. (2021-06-03) [2022-10-22]. . |
15 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers [C]// Proceedings of the 2020 European Conference on Computer Vision LNCS 12346. Cham: Springer, 2020: 213-229. 10.1007/978-3-030-58452-8_13 |
16 | STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: Transformer for semantic segmentation [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 7262-7272. 10.1109/iccv48922.2021.00717 |
17 | LI Y, ZHANG K, CAO J, et al. LocalViT: bringing locality to vision transformers [EB/OL]. (2021-04-12) [2022-10-22]. . 10.1109/iros55552.2023.10342025 |
18 | LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using Swin Transformer [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 1833-1844. 10.1109/iccvw54120.2021.00210 |
19 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. 10.1109/iccv48922.2021.00986 |
20 | HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs) [EB/OL]. (2020-07-08) [2022-10-22]. . |
21 | ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5718-5729. 10.1109/cvpr52688.2022.00564 |
22 | SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. 10.1109/cvpr.2018.00474 |
23 | MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821. 10.1109/iccv.2017.304 |
24 | WANG X, YU K, WU S, et al. ESRGAN: enhanced super-resolution generative adversarial networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11133. Cham: Springer, 2019: 63-79. |
25 | WANG X, XIE L, DONG C, et al. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 1905-1914. 10.1109/iccvw54120.2021.00217 |
26 | DU Z, LIU D, LIU J, et al. Fast and memory-efficient network towards efficient image super-resolution [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 853-862. 10.1109/cvprw56347.2022.00101 |
27 | ZHAO H, KONG X, HE J, et al. Efficient image super-resolution using pixel attention [C]// Proceedings of the 2021 European Conference on Computer Vision, LNCS 12537. Cham: Springer, 2020: 56-72. |
28 | TIMOFTE R, AGUSTSSON E, VAN GOOL L, et al. NTIRE 2017 challenge on single image super-resolution: methods and results [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1110-1121. 10.1109/cvprw.2017.150 |
29 | BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding [C]// Proceedings of the 2012 British Machine Vision Conference. Durham: BMVA Press, 2012: No.135. 10.5244/c.26.135 |
30 | ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations [C]// Proceedings of the 2010 International Conference on Curves and Surfaces LNCS 6920. Cham: Springer, 2012: 711-730. 10.1007/978-3-642-27413-8_47 |
31 | ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916. 10.1109/tpami.2010.161 |
32 | HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5197-5206. 10.1109/cvpr.2015.7299156 |
33 | MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using Manga109 dataset [J]. Multimedia Tools and Applications, 2017, 76(20): 21811-21838. 10.1007/s11042-016-4020-z |
34 | GAO X, LU W, TAO D, et al. Image quality assessment based on multiscale geometric analysis [J]. IEEE Transactions on Image Processing, 2009, 18(7): 1409-1423. 10.1109/tip.2009.2018014 |
35 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. 10.1109/tip.2003.819861 |
36 | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. (2017-01-30) [2022-08-03]. . |
37 | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3 [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. 10.1109/iccv.2019.00140 |
38 | DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9906. Cham: Springer, 2016: 391-407. |
39 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645. 10.1109/cvpr.2016.181 |
40 | LAI W S, HUANG J B, AHUJA N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2599-2613. 10.1109/tpami.2018.2865304 |
41 | ZHANG K, ZUO W, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3262-3271. 10.1109/cvpr.2018.00344 |
42 | ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 294-310. |
[1] | Yunyun GAO, Lasheng ZHAO, Qiang ZHANG. Acoustic word embedding model based on Bi-LSTM and convolutional-Transformer [J]. Journal of Computer Applications, 2024, 44(1): 123-128. |
[2] | Junhong ZHU, Junyu LAI, Lianqiang GAN, Zhiyong CHEN, Huashuo LIU, Guoyao XU. Video prediction model combining involution and convolution operators [J]. Journal of Computer Applications, 2024, 44(1): 113-122. |
[3] | Yuning ZHANG, Abudukelimu ABULIZI, Tisheng MEI, Chun XU, Maierdana MAIMAITIREYIMU, Halidanmu ABUDUKELIMU, Yutao HOU. Anomaly detection method for skeletal X-ray images based on self-supervised feature extraction [J]. Journal of Computer Applications, 2024, 44(1): 175-181. |
[4] | Li’an CHEN, Yi GUO. Text sentiment analysis model based on individual bias information [J]. Journal of Computer Applications, 2024, 44(1): 145-151. |
[5] | Hong WANG, Qing QIAN, Huan WANG, Yong LONG. Lightweight image tamper localization algorithm based on large kernel attention convolution [J]. Journal of Computer Applications, 2023, 43(9): 2692-2699. |
[6] | Mengmeng CHEN, Zhiwei QIAO. Sparse reconstruction of CT images based on Uformer with fused channel attention [J]. Journal of Computer Applications, 2023, 43(9): 2948-2954. |
[7] | Ziyi HE, Yan YANG, Yiling ZHANG. Multi-view clustering network with deep fusion [J]. Journal of Computer Applications, 2023, 43(9): 2651-2656. |
[8] | Kunting LU, Rongrong FEI, Xuande ZHANG. Remote sensing image pansharpening by convolutional neural network [J]. Journal of Computer Applications, 2023, 43(9): 2963-2969. |
[9] | Guangyao ZHAO, Xuan SHEN, Bo YU, Chenhui YI, Zhen LI. Impossible differential cryptanalysis of reduced-round ultra-lightweight block cipher PFP [J]. Journal of Computer Applications, 2023, 43(9): 2784-2788. |
[10] | Shaofa SHANG, Lin JIANG, Yuancheng LI, Yun ZHU. Adaptive partitioning and scheduling method of convolutional neural network inference model on heterogeneous platforms [J]. Journal of Computer Applications, 2023, 43(9): 2828-2835. |
[11] | Juntao CHEN, Ziqi ZHU. Image copy-move forgery detection based on multi-scale feature extraction and fusion [J]. Journal of Computer Applications, 2023, 43(9): 2919-2924. |
[12] | Xiaolin LI, Songjia YANG. Hybrid beamforming for multi-user mmWave relay networks using deep learning [J]. Journal of Computer Applications, 2023, 43(8): 2511-2516. |
[13] | Shengwei DUAN, Xinyu CHENG, Haozhou WANG, Fei WANG. Dam surface disease detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2023, 43(8): 2619-2629. |
[14] | Xiang GUO, Wengang JIANG, Yuhang WANG. Encrypted traffic classification method based on improved Inception-ResNet [J]. Journal of Computer Applications, 2023, 43(8): 2471-2476. |
[15] | Yumeng CUI, Jingya WANG, Xiaowen LIU, Shangyi YAN, Zhizhong TAO. General text classification model combining attention and cropping mechanism [J]. Journal of Computer Applications, 2023, 43(8): 2396-2405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||