1 |
SUN C Z, LI X, ZOU W, et al. Chinese marine economy development: dynamic evolution and spatial difference[J]. Chinese Geographical Science, 2018, 28(1): 111-126.
|
2 |
YANG G, LI B, JI S, et al. Ship detection from optical satellite images based on sea surface analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3),641-645.
|
3 |
GUO W, XIA X, XIAO F, et al. A remote sensing ship recognition method based on dynamic probability generative model [J]. Expert Systems with Applications,2014, 41(14): 6446-6458.
|
4 |
周旗开,张伟,李东锦,等.基于改进YOLOv5s的光学遥感图像舰船分类检测方法[J].激光与光电子学展,2022,59(16): 1628008.
|
|
ZHOU Q K, ZHANG W, LI D J, et al. Ship classification detection method for optical remote sensing images based on improved YOLOv5s[J].Laser & Optoelectronics Progress,2022, 59(16): 1628008.
|
5 |
王燕妮,孙雪松,余丽仙.增强感受野的轻量化合成孔径雷达船舶检测算法[J].光子学报,2022,51(2): 0210008.
|
|
WANG Y N, SUN X S, YU L X. Lightweight synthetic aperture radar ship detection algorithm with enhanced receptive field [J]. Acta Optica Sinica, 2022,51(2):0210008.
|
6 |
姚婷婷,张波,李鹏飞,等.基于鲁棒背景估计的船舶显著性检测[J].激光与光电子学进展,2022,59(8): 0810008.
|
|
YAO T T, ZHANG B, LI P F, et al. Ship significance detection based on robust background estimation [J]. Laser & Optoelectronics Progress, 2022,59(8):0810008.
|
7 |
HONG F, LIU C, GUO L,et al. Underwater acoustic target recognition with ResNet18 on ShipsEar dataset[C]// Proceedings of the 2021 IEEE 4th International Conference on Electronics Technology. Piscataway:IEEE, 2021:1204-1244.
|
8 |
SHAO Z, WU W, WANG Z, et al. SeaShips: a largescale precisely annotated dataset for ship detection[J]. IEEE Transactions on Multimedia, 2018, 20(10): 2593-2604.
|
9 |
周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251.
|
|
ZHOU F Y, JIN L P, DONG J. Review of convolutional neural networks [J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
|
10 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
|
11 |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
|
12 |
WOO S, PARK J, LEE J-Y, et al. CBAM: convolutional block attention module[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
|
13 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
|
14 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
|
15 |
鲁一冰,刘文清,张玉钧,等.一种自适应层进式Savitzky-Golay光谱滤波算法及其应用[J]. 光谱学与光谱分析,2019,39(9):2657-2663.
|
|
LU Y B, LIU W Q, ZHANG Y J, et al. An adaptive hierarchical Savitzky-Golay spectral filtering algorithm and its application[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2657-2663.
|
16 |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359.
|
17 |
葛芸,马琳,叶发茂,等.基于多尺度池化和范数注意力机制的遥感图像检索[J]. 电子与信息学报,2022,44(2):543-551.
|
|
GE Y, MA L, YE F M,et al. Remote sensing image retrieval based on multi-scale pooling and norm attention mechanism[J]. Journal of Electronics and Information Technology, 2022,44(2):543-551.
|
18 |
黄冬梅,王玥琦,胡安铎,等.融合多维度特征的绝缘子状态边缘识别方法[J].中国电力,2022,55(1):133-141.
|
|
HUANG D M, WANG Y Q, HU A D, et al. An edge recognition method for insulator state based on multi-dimension feature fusion[J]. Electric Power, 2022,55(1):133-141.
|
19 |
汪传建,赵庆展,马永建,等.基于卷积神经网络的无人机遥感农作物分类[J].农业机械学报,2019,50(11):161-168.
|
|
WANG C J, ZHAO Q Z, MA Y J, et al. Crop identification of drone remote sensing based on convolutional neural network [J]. Transactions of the Chinese Society for Agricultural Machinery,2019, 50(11): 161-168.
|