1 |
CHEN C L P, LIU Z. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1) :10-24.
|
2 |
CHEN C L P, LIU Z. Broad learning system: a new learning paradigm and system without going deep [C]// Proceedings of the 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation. Piscataway: IEEE, 2017:1271-1276.
|
3 |
ZHANG L, SUGANTHAN P N. A comprehensive evaluation of random vector functional link networks [J]. Information Sciences, 2016, 367/368: 1094-1105.
|
4 |
CHEN C L P, LIU Z, FENG S. Universal approximation capability of broad learning system and its structural variations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(4): 1191-1204.
|
5 |
ZHAO H, ZHENG J, DENG W, et al. Semi-supervised broad learning system based on manifold regularization and broad network[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2020, 67(3): 983-994.
|
6 |
贾贺姿.基于宽度学习和深度集成的图像分类[D].西安:西安电子科技大学, 2019: 38-61.
|
|
JIA H Z. Image classification based on broad learning and deep ensemble[D]. Xi’an: Xidian University, 2019: 38-61.
|
7 |
JIN J-W, CHEN C L P. Regularized robust broad learning system for uncertain data modeling [J]. Neurocomputing, 2018, 322:58-69.
|
8 |
郑云飞,陈霸东.基于最小p-范数的宽度学习系统[J].模式识别与人工智能,2019,32(1):51-57.
|
|
ZHENG Y F, CHEN B D. Least p-norm broad learning system[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(1): 51-57.
|
9 |
ZHOU Q, HE X. Broad learning model based on enhanced features learning [J]. IEEE Access, 2019, 7: 42536-42550.
|
10 |
杨永娇,邱宇,占力超.基于宽度学习的智能电网数据服务器流量异常检测算法[J].计算机与现代化,2019(9):77-82,89.
|
|
YANG Y J, QIU Y, ZHAN L C. An anomaly detection approach on servers traffic in smart grid based on breadth learning algorithm[J]. Computer and Modernization, 2019(9): 77-82, 89.
|
11 |
LIN Z D, CHEN H P, YANG Q, et al. A flexible approach for human activity recognition based on broad learning system [C]// Proceedings of the 2019 11th International Conference on Machine Learning and Computing. New York: ACM, 2019:368-373.
|
12 |
徐鹏飞,王敏,刘金平,等.基于数据分布特性的代价敏感宽度学习系统[J]. 控制与决策,2021, 36(7): 1686-1692.
|
|
XU P F, WANG M, LIU J P,et al. Data distribution-based cost-sensitive broad learning system[J]. Control and Decision, 2021, 36(7): 1686-1692.
|
13 |
ZONG W, HUANG G-B, CHEN Y. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013, 101: 229-242.
|
14 |
CHU F, LIANG T, CHEN C L P, et al. Weighted broad learning system and its application in nonlinear industrial process modeling[J]. IEEE Transactions Neural Networks and Learning Systems, 2020, 31(8): 3017-3031.
|
15 |
王萌铎,续欣莹,阎高伟,等.基于AdaBoost集成加权宽度学习系统的不平衡数据分类[J].计算机工程, 2020,48(4):99-105,112.
|
|
WANG M D, XU X Y, YAN G W, et al. Imbalanced data classification based on ensemble weighted broad learning system with AdaBoost[J]. Computer Engineering, 2020, 48(4): 99-105, 112.
|
16 |
郭威,徐涛.基于M-estimator的鲁棒宽度学习系统[J].控制与决策,2023, 38 (4): 1039-1046.
|
|
GUO W, XU T. M-estimator-based robust broad learning system[J]. Control and Decision, 2023, 38(4): 1039-1046.
|
17 |
任长娥, 袁超, 孙彦丽, 等. 宽度学习系统研究进展[J]. 计算机应用研究, 2021, 38(8): 2258-2267.
|
|
REN C E, YUAN C, SUN Y L, et al. Research of broad learning system [J]. Application Research of Computers, 2021, 38(8): 2258-2267.
|
18 |
HUANG G-B, ZHU Q-Y, C-K SIEW. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
|
19 |
BEN-ISRAEL A, GREVILLE T N E. Generalized Inverses: Theory And Applications[M]. New York: Springer-Verlag, 2003:56-98.
|
20 |
LV Y, LI B, YU J, et al. Reduce training error of extreme learning machine by selecting appropriate hidden layer output matrix[J]. Journal of Systems Science and Systems Engineering, 2021, 30: 552-571.
|
21 |
LeCUN Y, HUANG F J, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]// Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2004: 97-104.
|
22 |
BACHE K, LICHMAN M. UCI machine learning repository[DB/OL]. (2013-10-10) [2023-10-01]. .
|