Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (10): 3039-3046.DOI: 10.11772/j.issn.1001-9081.2023101452
• Artificial intelligence • Previous Articles Next Articles
Linhao LI1,2,3, Xiaoqian ZHANG1, Yao DONG1,2,3, Xu WANG1,2,3, Yongfeng DONG1,2,3()
Received:
2023-10-30
Revised:
2024-01-20
Accepted:
2024-01-26
Online:
2024-10-15
Published:
2024-10-10
Contact:
Yongfeng DONG
About author:
LI Linhao, born in 1989, Ph. D., associate professor. His research interests include machine learning, knowledge inference, computer vision.Supported by:
李林昊1,2,3, 张晓倩1, 董瑶1,2,3, 王旭1,2,3, 董永峰1,2,3()
通讯作者:
董永峰
作者简介:
李林昊(1989—),男,山东威海人,副教授,博士,CCF会员,主要研究方向:机器学习、知识推理、计算机视觉基金资助:
CLC Number:
Linhao LI, Xiaoqian ZHANG, Yao DONG, Xu WANG, Yongfeng DONG. Knowledge tracing based on personalized learning and deep refinement[J]. Journal of Computer Applications, 2024, 44(10): 3039-3046.
李林昊, 张晓倩, 董瑶, 王旭, 董永峰. 基于个性化学习和深层次细化的知识追踪[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3039-3046.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101452
数据集 | 学生数 | 知识概念数 | 习题数 | 回答交互数 |
---|---|---|---|---|
Statics2011 | 333 | 1 223 | — | 189 297 |
ASSIST09 | 4 151 | 110 | 16 891 | 325 637 |
ASSIST15 | 19 840 | 100 | — | 683 801 |
ASSIST17 | 1 709 | 102 | 3 162 | 942 816 |
Tab. 1 Statistics of four datasets
数据集 | 学生数 | 知识概念数 | 习题数 | 回答交互数 |
---|---|---|---|---|
Statics2011 | 333 | 1 223 | — | 189 297 |
ASSIST09 | 4 151 | 110 | 16 891 | 325 637 |
ASSIST15 | 19 840 | 100 | — | 683 801 |
ASSIST17 | 1 709 | 102 | 3 162 | 942 816 |
模型 | AUC | ||||
---|---|---|---|---|---|
Statics2011 | ASSIST09 | ASSIST15 | ASSIST17 | ||
不考虑习题嵌入 | DRKT-S | 0.832 9±0.005 5 | 0.824 7±0.002 9 | 0.822 0±0.004 2 | 0.729 2±0.004 9 |
DRKT-H | 0.836 0±0.004 0 | 0.839 5±0.003 9 | 0.841 0±0.003 0 | 0.749 8±0.007 1 | |
PLDRKT | 0.838 6±0.004 5 | 0.851 8±0.003 5 | 0.857 4±0.008 7 | 0.769 1±0.004 4 | |
考虑习题嵌入 | DRKT-Sq | — | 0.828 9±0.003 6 | — | 0.782 3±0.000 5 |
DRKT-Hq | — | 0.846 7±0.003 3 | — | 0.800 7±0.005 9 | |
PLDRKTq | — | 0.855 6±0.003 5 | — | 0.804 7±0.004 9 |
Tab. 2 Results of ablation experiments
模型 | AUC | ||||
---|---|---|---|---|---|
Statics2011 | ASSIST09 | ASSIST15 | ASSIST17 | ||
不考虑习题嵌入 | DRKT-S | 0.832 9±0.005 5 | 0.824 7±0.002 9 | 0.822 0±0.004 2 | 0.729 2±0.004 9 |
DRKT-H | 0.836 0±0.004 0 | 0.839 5±0.003 9 | 0.841 0±0.003 0 | 0.749 8±0.007 1 | |
PLDRKT | 0.838 6±0.004 5 | 0.851 8±0.003 5 | 0.857 4±0.008 7 | 0.769 1±0.004 4 | |
考虑习题嵌入 | DRKT-Sq | — | 0.828 9±0.003 6 | — | 0.782 3±0.000 5 |
DRKT-Hq | — | 0.846 7±0.003 3 | — | 0.800 7±0.005 9 | |
PLDRKTq | — | 0.855 6±0.003 5 | — | 0.804 7±0.004 9 |
模型 | AUC | ||||
---|---|---|---|---|---|
Statics2011 | ASSIST09 | ASSIST15 | ASSIST17 | ||
不考虑习题嵌入 | DKT | 0.823 3±0.003 9 | 0.817 0±0.004 3 | 0.731 0±0.001 8 | 0.726 3±0.005 4 |
DKT+ | 0.830 1±0.003 9 | 0.802 4±0.004 5 | 0.731 3±0.001 8 | 0.712 4±0.004 1 | |
DKVMN | 0.819 5±0.004 1 | 0.809 3±0.004 4 | 0.727 6±0.001 7 | 0.707 3±0.004 4 | |
SAKT | 0.802 9±0.003 2 | 0.752 0±0.004 0 | 0.721 2±0.002 0 | 0.656 9±0.002 7 | |
AKT-NR | 0.826 5±0.004 9 | 0.816 9±0.004 5 | 0.782 8±0.001 9 | 0.728 2±0.003 7 | |
ATKT | 0.832 5±0.004 3 | 0.824 4±0.003 2 | 0.804 5±0.009 7 | 0.729 7±0.005 1 | |
ENKTc | 0.831 4±0.005 4 | 0.838 6±0.004 1 | 0.732 8±0.002 1 | 0.767 2±0.003 1 | |
PLDRKT | 0.838 6±0.004 5 | 0.851 8±0.003 5 | 0.857 4±0.008 7 | 0.769 1±0.004 4 | |
考虑习题嵌入 | AKT-R | — | 0.834 6±0.003 6 | — | 0.770 2±0.002 6 |
ENKTq | — | 0.839 4±0.004 5 | — | 0.774 4±0.003 3 | |
PLDRKTq | — | 0.855 6±0.003 5 | — | 0.804 7±0.004 9 |
Tab. 3 Prediction performance on four datasets
模型 | AUC | ||||
---|---|---|---|---|---|
Statics2011 | ASSIST09 | ASSIST15 | ASSIST17 | ||
不考虑习题嵌入 | DKT | 0.823 3±0.003 9 | 0.817 0±0.004 3 | 0.731 0±0.001 8 | 0.726 3±0.005 4 |
DKT+ | 0.830 1±0.003 9 | 0.802 4±0.004 5 | 0.731 3±0.001 8 | 0.712 4±0.004 1 | |
DKVMN | 0.819 5±0.004 1 | 0.809 3±0.004 4 | 0.727 6±0.001 7 | 0.707 3±0.004 4 | |
SAKT | 0.802 9±0.003 2 | 0.752 0±0.004 0 | 0.721 2±0.002 0 | 0.656 9±0.002 7 | |
AKT-NR | 0.826 5±0.004 9 | 0.816 9±0.004 5 | 0.782 8±0.001 9 | 0.728 2±0.003 7 | |
ATKT | 0.832 5±0.004 3 | 0.824 4±0.003 2 | 0.804 5±0.009 7 | 0.729 7±0.005 1 | |
ENKTc | 0.831 4±0.005 4 | 0.838 6±0.004 1 | 0.732 8±0.002 1 | 0.767 2±0.003 1 | |
PLDRKT | 0.838 6±0.004 5 | 0.851 8±0.003 5 | 0.857 4±0.008 7 | 0.769 1±0.004 4 | |
考虑习题嵌入 | AKT-R | — | 0.834 6±0.003 6 | — | 0.770 2±0.002 6 |
ENKTq | — | 0.839 4±0.004 5 | — | 0.774 4±0.003 3 | |
PLDRKTq | — | 0.855 6±0.003 5 | — | 0.804 7±0.004 9 |
1 | CARBONARA A, DATTA A, SINHA A, et al. Incentivizing peer grading in MOOCs: an audit game approach[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2015: 497-503. |
2 | ANDERSON J R, BOYLE C F, REISER B J. Intelligent tutoring systems[J]. Science, 1985, 228(4698): 456-462. |
3 | PIECH C, SPENCER J, HUANG J, et al. Deep knowledge tracing[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 1. Cambridge: MIT Press, 2015: 505-513. |
4 | HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
5 | ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 765-774. |
6 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
7 | PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing[C]// Proceedings of the 12th International Conference on Educational Data Mining. [S.l.]: International Educational Data Mining Society, 2019: 384-389. |
8 | SHEN S, LIU Q, CHEN E, et al. Convolutional knowledge tracing: modeling individualization in student learning process[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1857-1860. |
9 | SHEN S, HUANG Z, LIU Q, et al. Assessing student’s dynamic knowledge state by exploring the question difficulty effect[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 427-437. |
10 | CORBETT A T, ANDERSON J R. Knowledge tracing: modeling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1994, 4(4): 253-278. |
11 | YUDELSON M V, KOEDINGER K R, GORDON G J. Individualized Bayesian knowledge tracing models[C]// Proceedings of the 2013 International Conference, LNCS 7926. Cham: Springer, 2013: 171-180. |
12 | ZHANG K, YAO Y. A three learning states Bayesian knowledge tracing model[J]. Knowledge-Based Systems, 2018, 148: 189-201. |
13 | DiBELLO L V, ROUSSOS L A, STOUT W. Review of cognitively diagnostic assessment and a summary of psychometric models[J]. Handbook of Statistics, 2006, 26: 979-1030. |
14 | YEUNG C K, YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regularization[C]// Proceedings of the 5th Annual ACM Conference on Learning at Scale. New York: ACM, 2018: No.5. |
15 | ZHANG Q, CHEN Z Y, LALWANI N, et al. Modifying deep knowledge tracing for multi-step problems[C]// Proceedings of the 15th International Conference on Educational Data Mining. [S.l.]: International Educational Data Mining Society, 2022: 1-5. |
16 | 邵小萌,张猛. 融合注意力机制的时间卷积知识追踪模型[J]. 计算机应用, 2023, 43(2): 343-348. |
SHAO X M, ZHANG M. Temporal convolutional knowledge tracing model with attention mechanism[J]. Journal of Computer Applications, 2023, 43(2): 343-348. | |
17 | HE L, TANG J, LI X, et al. Multi-type factors representation learning for deep learning-based knowledge tracing[J]. World Wide Web, 2022, 25(3): 1343-1372. |
18 | ABDELRAHMAN G, WANG Q. Knowledge tracing with sequential key-value memory networks[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 175-184. |
19 | SUN X, ZHAO X, LI B, et al. Dynamic key-value memory networks with rich features for knowledge tracing[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8239-8245. |
20 | GHOSH A, HEFFERNAN N, LAN A S. Context-aware attentive knowledge tracing[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 2330-2339. |
21 | PANDEY S, SRIVASTAVA J. RKT: relation-aware self-attention for knowledge tracing[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1205-1214. |
22 | LEE W, CHUN J, LEE Y, et al. Contrastive learning for knowledge tracing[C]// Proceedings of the 2022 ACM Web Conference. New York: ACM, 2022: 2330-2338. |
23 | GUO X, HUANG Z J, GAO J, et al. Enhancing knowledge tracing via adversarial training[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 367-375. |
24 | SU Y, LIU Q, LIU Q, et al. Exercise-enhanced sequential modeling for student performance prediction[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018: 2435-2443. |
25 | LIU Q, HUANG Z, YIN Y, et al. EKT: exercise-aware knowledge tracing for student performance prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(1): 100-115. |
26 | SHEN S, LIU Q, CHEN E, et al. Learning process-consistent knowledge tracing[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1452-1460. |
27 | WEI L, LI B, LI Y, et al. Time interval aware self-attention approach for knowledge tracing[J]. Computers and Electrical Engineering, 2022, 102: No.108179. |
28 | WANG C, MA W, ZHANG M, et al. Temporal cross-effects in knowledge tracing[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining. New York: ACM, 2021: 517-525. |
29 | LONG T, LIU Y, SHEN J, et al. Tracing knowledge state with individual cognition and acquisition estimation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 173-182. |
30 | LONG T, QIN J, SHEN J, et al. Improving knowledge tracing with collaborative information[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 599-607. |
31 | 郑浩东,马华,谢颖超,等. 融合遗忘因素与记忆门的图神经网络知识追踪模型[J]. 计算机应用, 2023, 43(9):2747-2752. |
ZHENG H D, MA H, XIE Y C, et al. Knowledge tracing model based on graph neural network blending with forgetting factors and memory gate[J]. Journal of Computer Applications, 2023, 43(9): 2747-2752. | |
32 | SUN J, ZOU R, LIANG R, et al. Ensemble knowledge tracing: modeling interactions in learning process[J]. Expert Systems with Applications, 2022, 207: No.117680. |
33 | CONTI M, DI PIETRO R, MANCINI L V, et al. Distributed data source verification in wireless sensor networks[J]. Information Fusion, 2009, 10(4): 342-353. |
[1] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[5] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[6] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[7] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
[8] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. |
[9] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[10] | Yuqing WANG, Guangli ZHU, Wenjie DUAN, Shuyu LI, Ruotong ZHOU. Sentiment classification model of psychological counseling text based on attention over attention mechanism [J]. Journal of Computer Applications, 2024, 44(8): 2393-2399. |
[11] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[12] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[13] | Caiqin WANG, Yuhao ZHOU, Shunxiang ZHANG, Yanhui WANG, Xiaolong WANG. Aspect-opinion pair extraction of new energy vehicle complaint text based on context enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2430-2436. |
[14] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[15] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||