Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3442-3448.DOI: 10.11772/j.issn.1001-9081.2023111684
• Data science and technology • Previous Articles Next Articles
Yiyang FAN1,2, Yang ZHANG1,2,3(), Shang ZENG1,2, Yu ZENG1,2, Maoli FU1,2,3
Received:
2023-12-08
Revised:
2024-03-08
Accepted:
2024-03-12
Online:
2024-03-22
Published:
2024-11-10
Contact:
Yang ZHANG
About author:
FAN Yiyang, born in 1998, M. S. candidate. His research interests include time series analysis, data mining.Supported by:
范艺扬1,2, 张洋1,2,3(), 曾尚1,2, 曾渝1,2, 付茂栗1,2,3
通讯作者:
张洋
作者简介:
范艺扬(1998—),男,四川成都人 ,硕士研究生 ,主要研究方向:时间序列分析、数据挖掘基金资助:
CLC Number:
Yiyang FAN, Yang ZHANG, Shang ZENG, Yu ZENG, Maoli FU. Multivariate long-term series forecasting model based on decomposition and frequency domain feature extraction[J]. Journal of Computer Applications, 2024, 44(11): 3442-3448.
范艺扬, 张洋, 曾尚, 曾渝, 付茂栗. 基于分解和频域特征提取的多变量长时间序列预测模型[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3442-3448.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111684
数据集 | 长度 | 维度 | 采集频率/min |
---|---|---|---|
ETT1/ETT2 | 69 680 | 8 | 15 / 60 |
Electricity | 26 304 | 322 | 60 |
Exchange | 7 588 | 9 | 1 440 |
Weather | 52 696 | 22 | 10 |
Illness | 966 | 8 | 10 080 |
Tab. 1 Feature details of five datasets
数据集 | 长度 | 维度 | 采集频率/min |
---|---|---|---|
ETT1/ETT2 | 69 680 | 8 | 15 / 60 |
Electricity | 26 304 | 322 | 60 |
Exchange | 7 588 | 9 | 1 440 |
Weather | 52 696 | 22 | 10 |
Illness | 966 | 8 | 10 080 |
数据集 | 预测长度 | 本文模型 | FEDformer | Autoformer | Informer | LogTrans | Reformer | LSTNet | LSTM | TCN | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
ETTm2 | 96 | 0.188 | 0.281 | 0.203 | 0.287 | 0.255 | 0.339 | 0.365 | 0.453 | 0.768 | 0.642 | 0.658 | 0.619 | 3.142 | 1.365 | 2.041 | 1.073 | 3.041 | 1.330 |
192 | 0.252 | 0.322 | 0.269 | 0.328 | 0.281 | 0.340 | 0.533 | 0.563 | 0.989 | 0.757 | 1.078 | 0.827 | 1.154 | 1.369 | 2.249 | 1.112 | 3.072 | 1.339 | |
336 | 0.315 | 0.363 | 0.325 | 0.366 | 0.339 | 0.372 | 1.363 | 0.887 | 1.334 | 0.872 | 1.549 | 0.972 | 3.160 | 1.369 | 2.568 | 1.238 | 3.105 | 1.348 | |
720 | 0.411 | 0.410 | 0.421 | 0.415 | 0.422 | 0.419 | 3.379 | 1.388 | 3.048 | 1.328 | 2.631 | 1.242 | 3.171 | 1.368 | 2.720 | 1.278 | 3.135 | 1.354 | |
Electricity | 96 | 0.189 | 0.304 | 0.193 | 0.308 | 0.201 | 0.317 | 0.274 | 0.368 | 0.258 | 0.357 | 0.312 | 0.402 | 0.680 | 0.645 | 0.375 | 0.437 | 0.985 | 0.813 |
192 | 0.197 | 0.313 | 0.201 | 0.315 | 0.222 | 0.334 | 0.296 | 0.386 | 0.266 | 0.368 | 0.348 | 0.433 | 0.725 | 0.676 | 0.442 | 0.473 | 0.996 | 0.821 | |
336 | 0.207 | 0.324 | 0.214 | 0.329 | 0.231 | 0.338 | 0.300 | 0.394 | 0.280 | 0.380 | 0.350 | 0.433 | 0.828 | 0.727 | 0.439 | 0.473 | 1.000 | 0.824 | |
720 | 0.238 | 0.349 | 0.246 | 0.355 | 0.254 | 0.361 | 0.373 | 0.439 | 0.283 | 0.376 | 0.340 | 0.420 | 0.957 | 0.811 | 0.980 | 0.814 | 1.438 | 0.784 | |
Exchange | 96 | 0.120 | 0.250 | 0.148 | 0.278 | 0.197 | 0.323 | 0.847 | 0.752 | 0.968 | 0.812 | 1.065 | 0.829 | 1.551 | 1.058 | 1.453 | 1.049 | 3.004 | 1.432 |
192 | 0.226 | 0.344 | 0.271 | 0.380 | 0.300 | 0.369 | 1.204 | 0.895 | 1.040 | 0.851 | 1.188 | 0.906 | 1.477 | 1.028 | 1.846 | 1.179 | 3.048 | 1.444 | |
336 | 0.384 | 0.452 | 0.460 | 0.500 | 0.509 | 0.524 | 1.672 | 1.036 | 1.659 | 1.081 | 1.350 | 0.976 | 1.507 | 1.031 | 2.136 | 1.231 | 3.113 | 1.459 | |
720 | 1.139 | 0.813 | 1.195 | 0.841 | 1.447 | 0.941 | 2.478 | 1.310 | 1.941 | 1.127 | 1.510 | 1.016 | 2.285 | 1.243 | 2.984 | 1.427 | 3.150 | 1.458 | |
Weather | 96 | 0.212 | 0.294 | 0.217 | 0.296 | 0.266 | 0.336 | 0.300 | 0.384 | 0.458 | 0.490 | 0.689 | 0.596 | 0.594 | 0.587 | 0.369 | 0.406 | 0.615 | 0.589 |
192 | 0.261 | 0.329 | 0.276 | 0.336 | 0.307 | 0.367 | 0.598 | 0.544 | 0.658 | 0.589 | 0.752 | 0.638 | 0.560 | 0.565 | 0.416 | 0.435 | 0.629 | 0.600 | |
336 | 0.312 | 0.364 | 0.339 | 0.380 | 0.359 | 0.395 | 0.578 | 0.523 | 0.797 | 0.652 | 0.639 | 0.596 | 0.597 | 0.587 | 0.455 | 0.454 | 0.639 | 0.608 | |
720 | 0.399 | 0.413 | 0.403 | 0.428 | 0.419 | 0.428 | 1.059 | 0.741 | 0.869 | 0.675 | 1.130 | 0.782 | 0.618 | 0.599 | 0.535 | 0.520 | 0.639 | 0.610 | |
Illness | 24 | 2.623 | 1.060 | 3.228 | 1.260 | 3.483 | 1.287 | 5.764 | 1.677 | 4.480 | 1.444 | 4.000 | 1.382 | 6.026 | 1.770 | 5.914 | 1.734 | 6.624 | 1.830 |
36 | 2.399 | 0.981 | 2.679 | 1.080 | 3.103 | 1.148 | 4.755 | 1.467 | 4.799 | 1.467 | 4.783 | 1.448 | 5.340 | 1.668 | 6.631 | 1.845 | 6.858 | 1.879 | |
48 | 2.367 | 0.980 | 2.622 | 1.078 | 2.669 | 1.085 | 4.763 | 1.469 | 4.800 | 1.468 | 4.832 | 1.465 | 6.080 | 1.787 | 6.736 | 1.857 | 6.968 | 1.892 | |
60 | 2.575 | 1.056 | 2.857 | 1.157 | 2.770 | 1.125 | 5.264 | 1.564 | 5.278 | 1.560 | 4.882 | 1.483 | 5.548 | 1.720 | 6.870 | 1.879 | 7.127 | 1.918 |
Tab. 2 Multivariate long-term series forecasting results on five datasets
数据集 | 预测长度 | 本文模型 | FEDformer | Autoformer | Informer | LogTrans | Reformer | LSTNet | LSTM | TCN | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
ETTm2 | 96 | 0.188 | 0.281 | 0.203 | 0.287 | 0.255 | 0.339 | 0.365 | 0.453 | 0.768 | 0.642 | 0.658 | 0.619 | 3.142 | 1.365 | 2.041 | 1.073 | 3.041 | 1.330 |
192 | 0.252 | 0.322 | 0.269 | 0.328 | 0.281 | 0.340 | 0.533 | 0.563 | 0.989 | 0.757 | 1.078 | 0.827 | 1.154 | 1.369 | 2.249 | 1.112 | 3.072 | 1.339 | |
336 | 0.315 | 0.363 | 0.325 | 0.366 | 0.339 | 0.372 | 1.363 | 0.887 | 1.334 | 0.872 | 1.549 | 0.972 | 3.160 | 1.369 | 2.568 | 1.238 | 3.105 | 1.348 | |
720 | 0.411 | 0.410 | 0.421 | 0.415 | 0.422 | 0.419 | 3.379 | 1.388 | 3.048 | 1.328 | 2.631 | 1.242 | 3.171 | 1.368 | 2.720 | 1.278 | 3.135 | 1.354 | |
Electricity | 96 | 0.189 | 0.304 | 0.193 | 0.308 | 0.201 | 0.317 | 0.274 | 0.368 | 0.258 | 0.357 | 0.312 | 0.402 | 0.680 | 0.645 | 0.375 | 0.437 | 0.985 | 0.813 |
192 | 0.197 | 0.313 | 0.201 | 0.315 | 0.222 | 0.334 | 0.296 | 0.386 | 0.266 | 0.368 | 0.348 | 0.433 | 0.725 | 0.676 | 0.442 | 0.473 | 0.996 | 0.821 | |
336 | 0.207 | 0.324 | 0.214 | 0.329 | 0.231 | 0.338 | 0.300 | 0.394 | 0.280 | 0.380 | 0.350 | 0.433 | 0.828 | 0.727 | 0.439 | 0.473 | 1.000 | 0.824 | |
720 | 0.238 | 0.349 | 0.246 | 0.355 | 0.254 | 0.361 | 0.373 | 0.439 | 0.283 | 0.376 | 0.340 | 0.420 | 0.957 | 0.811 | 0.980 | 0.814 | 1.438 | 0.784 | |
Exchange | 96 | 0.120 | 0.250 | 0.148 | 0.278 | 0.197 | 0.323 | 0.847 | 0.752 | 0.968 | 0.812 | 1.065 | 0.829 | 1.551 | 1.058 | 1.453 | 1.049 | 3.004 | 1.432 |
192 | 0.226 | 0.344 | 0.271 | 0.380 | 0.300 | 0.369 | 1.204 | 0.895 | 1.040 | 0.851 | 1.188 | 0.906 | 1.477 | 1.028 | 1.846 | 1.179 | 3.048 | 1.444 | |
336 | 0.384 | 0.452 | 0.460 | 0.500 | 0.509 | 0.524 | 1.672 | 1.036 | 1.659 | 1.081 | 1.350 | 0.976 | 1.507 | 1.031 | 2.136 | 1.231 | 3.113 | 1.459 | |
720 | 1.139 | 0.813 | 1.195 | 0.841 | 1.447 | 0.941 | 2.478 | 1.310 | 1.941 | 1.127 | 1.510 | 1.016 | 2.285 | 1.243 | 2.984 | 1.427 | 3.150 | 1.458 | |
Weather | 96 | 0.212 | 0.294 | 0.217 | 0.296 | 0.266 | 0.336 | 0.300 | 0.384 | 0.458 | 0.490 | 0.689 | 0.596 | 0.594 | 0.587 | 0.369 | 0.406 | 0.615 | 0.589 |
192 | 0.261 | 0.329 | 0.276 | 0.336 | 0.307 | 0.367 | 0.598 | 0.544 | 0.658 | 0.589 | 0.752 | 0.638 | 0.560 | 0.565 | 0.416 | 0.435 | 0.629 | 0.600 | |
336 | 0.312 | 0.364 | 0.339 | 0.380 | 0.359 | 0.395 | 0.578 | 0.523 | 0.797 | 0.652 | 0.639 | 0.596 | 0.597 | 0.587 | 0.455 | 0.454 | 0.639 | 0.608 | |
720 | 0.399 | 0.413 | 0.403 | 0.428 | 0.419 | 0.428 | 1.059 | 0.741 | 0.869 | 0.675 | 1.130 | 0.782 | 0.618 | 0.599 | 0.535 | 0.520 | 0.639 | 0.610 | |
Illness | 24 | 2.623 | 1.060 | 3.228 | 1.260 | 3.483 | 1.287 | 5.764 | 1.677 | 4.480 | 1.444 | 4.000 | 1.382 | 6.026 | 1.770 | 5.914 | 1.734 | 6.624 | 1.830 |
36 | 2.399 | 0.981 | 2.679 | 1.080 | 3.103 | 1.148 | 4.755 | 1.467 | 4.799 | 1.467 | 4.783 | 1.448 | 5.340 | 1.668 | 6.631 | 1.845 | 6.858 | 1.879 | |
48 | 2.367 | 0.980 | 2.622 | 1.078 | 2.669 | 1.085 | 4.763 | 1.469 | 4.800 | 1.468 | 4.832 | 1.465 | 6.080 | 1.787 | 6.736 | 1.857 | 6.968 | 1.892 | |
60 | 2.575 | 1.056 | 2.857 | 1.157 | 2.770 | 1.125 | 5.264 | 1.564 | 5.278 | 1.560 | 4.882 | 1.483 | 5.548 | 1.720 | 6.870 | 1.879 | 7.127 | 1.918 |
数据集 | 预测长度 | 本文模型 | 版本1 | 版本2 | 版本3 | FEDformer | Autoformer | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
ETTh1 | 96 | 0.362 | 0.408 | 0.366 | 0.410 | 0.413 | 0.449 | 0.375 | 0.413 | 0.395 | 0.419 | 0.449 | 0.459 |
192 | 0.405 | 0.434 | 0.410 | 0.437 | 0.468 | 0.483 | 0.419 | 0.442 | 0.420 | 0.445 | 0.500 | 0.482 | |
336 | 0.414 | 0.440 | 0.438 | 0.453 | 0.637 | 0.587 | 0.438 | 0.454 | 0.459 | 0.465 | 0.521 | 0.496 | |
720 | 0.490 | 0.498 | 0.492 | 0.499 | 0.664 | 0.614 | 0.496 | 0.500 | 0.506 | 0.507 | 0.544 | 0.514 | |
ETTm2 | 96 | 0.188 | 0.281 | 0.190 | 0.283 | 0.203 | 0.304 | 0.192 | 0.286 | 0.203 | 0.287 | 0.255 | 0.339 |
192 | 0.252 | 0.322 | 0.258 | 0.326 | 0.268 | 0.347 | 0.264 | 0.333 | 0.269 | 0.328 | 0.281 | 0.340 | |
336 | 0.315 | 0.363 | 0.322 | 0.368 | 0.317 | 0.384 | 0.324 | 0.370 | 0.325 | 0.366 | 0.339 | 0.372 | |
720 | 0.411 | 0.410 | 0.419 | 0.417 | 0.428 | 0.425 | 0.421 | 0.419 | 0.421 | 0.415 | 0.422 | 0.419 |
Tab. 3 Ablation studies of multivariate long-term series forecasting on ETTh1 and ETTm2 datasets
数据集 | 预测长度 | 本文模型 | 版本1 | 版本2 | 版本3 | FEDformer | Autoformer | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | ||
ETTh1 | 96 | 0.362 | 0.408 | 0.366 | 0.410 | 0.413 | 0.449 | 0.375 | 0.413 | 0.395 | 0.419 | 0.449 | 0.459 |
192 | 0.405 | 0.434 | 0.410 | 0.437 | 0.468 | 0.483 | 0.419 | 0.442 | 0.420 | 0.445 | 0.500 | 0.482 | |
336 | 0.414 | 0.440 | 0.438 | 0.453 | 0.637 | 0.587 | 0.438 | 0.454 | 0.459 | 0.465 | 0.521 | 0.496 | |
720 | 0.490 | 0.498 | 0.492 | 0.499 | 0.664 | 0.614 | 0.496 | 0.500 | 0.506 | 0.507 | 0.544 | 0.514 | |
ETTm2 | 96 | 0.188 | 0.281 | 0.190 | 0.283 | 0.203 | 0.304 | 0.192 | 0.286 | 0.203 | 0.287 | 0.255 | 0.339 |
192 | 0.252 | 0.322 | 0.258 | 0.326 | 0.268 | 0.347 | 0.264 | 0.333 | 0.269 | 0.328 | 0.281 | 0.340 | |
336 | 0.315 | 0.363 | 0.322 | 0.368 | 0.317 | 0.384 | 0.324 | 0.370 | 0.325 | 0.366 | 0.339 | 0.372 | |
720 | 0.411 | 0.410 | 0.419 | 0.417 | 0.428 | 0.425 | 0.421 | 0.419 | 0.421 | 0.415 | 0.422 | 0.419 |
1 | ZHOU H, ZHANG S, PENG J, et al. Informer: beyond efficient Transformer for long sequence time-series forecasting[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 11106-11115. |
2 | 郭建平.农业气象灾害监测预测技术研究进展[J].应用气象学报,2016,27(5):620-630. |
GUO J P. Research progress on agricultural meteorological disaster monitoring and forecasting[J]. Journal of Applied Meteorological Science, 2016, 27(5): 620-630. | |
3 | YIN Y, SHANG P. Forecasting traffic time series with multivariate predicting method[J]. Applied Mathematics and Computation, 2016, 291: 266-278. |
4 | WU H, HU T, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis[EB/OL]. (2023-04-12) [2023-10-19].. |
5 | ZENG A, CHEN M, ZHANG L, et al. Are Transformers effective for time series forecasting?[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto, CA : AAAI Press, 2023:11121-11128. |
6 | ZHOU T, MA Z, WEN Q, et al. FEDformer: frequency enhanced decomposed Transformer for long-term series forecasting[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR.org, 2022: 27268-27286. |
7 | JONES D L, PARKS T W. Time-frequency window leakage in the short-time Fourier transform[J]. Circuits, Systems and Signal Processing, 1987, 6(3): 263-286. |
8 | GOTTLIEB D, SHU C W. On the Gibbs phenomenon and its resolution[J]. SIAM Review, 1997, 39(4): 644-668. |
9 | WANG H, PENG J, HUANG F, et al. MICN: multi-scale local and global context modeling for long-term series forecasting[EB/OL]. [2023-12-22].. |
10 | GU G F, ZHOU W X. Detrending moving average algorithm for multifractals[J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(1): No.011136. |
11 | HUNTER J S. The exponentially weighted moving average[J]. Journal of Quality Technology, 1986, 18(4): 203-210. |
12 | SHUMWAY R H, STOFFER D S. ARIMA models[M]// Time series Analysis and Its Applications: With R Examples. Cham: Springer, 2017: 75-163. |
13 | WEST M. Time series decomposition[J]. Biometrika, 1997, 84(2): 489-494. |
14 | QIAN S, CHEN D. Discrete Gabor transform[J]. IEEE Transactions on Signal Processing, 1993, 41(7): 2429-2438. |
15 | BRACEWELL R, KAHN P B. The Fourier transform and its applications[J]. American Journal of Physics, 1966, 34(8): 712-712. |
16 | SELESNICK I W, BURRUS C S. Generalized digital Butterworth filter design[J]. IEEE Transactions on Signal Processing, 1998, 46(6): 1688-1694. |
17 | YOUNG I T, VAN VLIET L J. Recursive implementation of the Gaussian filter[J]. Signal Processing, 1995, 44(2): 139-151. |
18 | WU H, XU J, WANG J, et al. Autoformer: decomposition Transformers with auto-correlation for long-term series forecasting[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2021: 22419-22430. |
19 | TRINDADE A. ElectricityLoadDiagrams20112014 in UCI Machine Learning Repository[DS/OL]. [2023-10-19].. |
20 | LAI G, CHANG W C, YANG Y, et al. Modeling long- and short-term temporal patterns with deep neural networks[C]// Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 95-104. |
21 | CHOLLET F. Deep learning with Python[M]. 2nd ed. Shelter Island, NY: Manning Publications, 2021: 45-52 |
22 | KITAEV N, KAISER Ł, LEVSKAYA A. Reformer: the efficient Transformer[EB/OL]. [2023-11-08].. |
23 | NIE X, ZHOU X, LI Z, et al. LogTrans: providing efficient local-global fusion with Transformer and CNN parallel network for biomedical image segmentation[C]// Proceedings of the 24th IEEE International Conference on High Performance Computing and Communications/ 8th IEEE International Conference on Data Science and Systems/ 20th IEEE International Conference on Smart City/ 8th IEEE International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application. Piscataway: IEEE, 2022: 769-776. |
24 | HEWAGE P, BEHERA A, TROVATI M, et al. Temporal Convolutional Neural (TCN) network for an effective weather forecasting using time-series data from the local weather station[J]. Soft Computing, 2020, 24(21): 16453-16482. |
[1] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[2] | Liehong REN, Lyuwen HUANG, Xu TIAN, Fei DUAN. Multivariate long-term series forecasting method with DFT-based frequency-sensitive dual-branch Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2739-2746. |
[3] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[4] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[7] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[8] | Qinzhuang ZHAO, Hongye TAN. Time series causal inference method based on adaptive threshold learning [J]. Journal of Computer Applications, 2024, 44(9): 2660-2666. |
[9] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[10] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[11] | Lilin FAN, Fukang CAO, Wanting WANG, Kai YANG, Zhaoyu SONG. Intermittent demand forecasting method based on adaptive matching of demand patterns [J]. Journal of Computer Applications, 2024, 44(9): 2747-2755. |
[12] | Jiepo FANG, Chongben TAO. Hybrid internet of vehicles intrusion detection system for zero-day attacks [J]. Journal of Computer Applications, 2024, 44(9): 2763-2769. |
[13] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[14] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[15] | Yuwei DING, Hongbo SHI, Jie LI, Min LIANG. Image denoising network based on local and global feature decoupling [J]. Journal of Computer Applications, 2024, 44(8): 2571-2579. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||