Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (11): 3459-3469.DOI: 10.11772/j.issn.1001-9081.2023111653
• Cyber security • Previous Articles Next Articles
Xuebin CHEN1,2,3, Changsheng QU1,2,3()
Received:
2023-12-01
Revised:
2024-07-02
Accepted:
2024-07-03
Online:
2024-11-13
Published:
2024-11-10
Contact:
Changsheng QU
About author:
CHEN Xuebin, born in 1970, Ph. D, professor. His research interests include big data security, internet of things security, network security.
Supported by:
通讯作者:
屈昌盛
作者简介:
陈学斌(1970—),男,河北唐山人,教授,博士,CCF杰出会员,主要研究方向:大数据安全、物联网安全、网络安全
基金资助:
CLC Number:
Xuebin CHEN, Changsheng QU. Overview of backdoor attacks and defense in federated learning[J]. Journal of Computer Applications, 2024, 44(11): 3459-3469.
陈学斌, 屈昌盛. 面向联邦学习的后门攻击与防御综述[J]. 《计算机应用》唯一官方网站, 2024, 44(11): 3459-3469.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023111653
文献 | 名称 | 发表年份 | 攻击假设 | 数据分布 | 应用 | ||
---|---|---|---|---|---|---|---|
合谋 | 持续攻击 | 聚合阶段限制 | |||||
[ | 模型替换攻击 | 2018 | × | × | √ | non-i.i.d | IC、NLP |
[ | AnaFL | 2019 | × | √ | √ | i.i.d | IC、LR |
[ | FL-IoT | 2020 | √ | √ | × | — | IoTD |
[ | DBA | 2020 | √ | × | √ | non-i.i.d | IC |
[ | Edge-case | 2020 | × | √ | × | non-i.i.d | IC、NLP |
[ | GRA | 2020 | × | √ | × | — | IC |
[ | PoisonGAN | 2021 | √ | √ | × | — | IC |
[ | DMPA | 2021 | × | × | × | non-i.i.d | IC |
[ | RE+CE | 2022 | √ | √ | × | non-i.i.d | NLP |
[ | CBA | 2022 | √ | √ | × | non-i.i.d | IC |
[ | WPKA-BA | 2022 | × | × | × | non-i.i.d | IC |
[ | PGD | 2022 | √ | √ | × | non-i.i.d | IC |
[ | Neurotoxin | 2022 | × | √ | × | i.i.d/non-i.i.d | IC、NLP |
[ | Anticipate | 2022 | × | √ | × | i.i.d/non-i.i.d | IC、NLP |
[ | GRA-HE | 2022 | × | √ | × | i.i.d | IC |
[ | RLBFL | 2023 | √ | √ | × | i.i.d | IC |
[ | 3DFed | 2023 | √ | √ | × | non-i.i.d | IC |
[ | BCL | 2023 | √ | √ | × | i.i.d/non-i.i.d | IC |
[ | CerP | 2023 | √ | √ | × | non-i.i.d | IC、L/CRA |
[ | Sniper | 2023 | × | × | √ | i.i.d/non-i.i.d | IC |
[ | TSSO | 2023 | √ | √ | × | non-i.i.d | IC、L/CRA |
[ | A3FL | 2023 | √ | √ | × | non-i.i.d | IC |
[ | IBA | 2023 | × | √ | × | non-i.i.d | IC |
Tab. 1 Comparison of backdoor attack methods in FL environment
文献 | 名称 | 发表年份 | 攻击假设 | 数据分布 | 应用 | ||
---|---|---|---|---|---|---|---|
合谋 | 持续攻击 | 聚合阶段限制 | |||||
[ | 模型替换攻击 | 2018 | × | × | √ | non-i.i.d | IC、NLP |
[ | AnaFL | 2019 | × | √ | √ | i.i.d | IC、LR |
[ | FL-IoT | 2020 | √ | √ | × | — | IoTD |
[ | DBA | 2020 | √ | × | √ | non-i.i.d | IC |
[ | Edge-case | 2020 | × | √ | × | non-i.i.d | IC、NLP |
[ | GRA | 2020 | × | √ | × | — | IC |
[ | PoisonGAN | 2021 | √ | √ | × | — | IC |
[ | DMPA | 2021 | × | × | × | non-i.i.d | IC |
[ | RE+CE | 2022 | √ | √ | × | non-i.i.d | NLP |
[ | CBA | 2022 | √ | √ | × | non-i.i.d | IC |
[ | WPKA-BA | 2022 | × | × | × | non-i.i.d | IC |
[ | PGD | 2022 | √ | √ | × | non-i.i.d | IC |
[ | Neurotoxin | 2022 | × | √ | × | i.i.d/non-i.i.d | IC、NLP |
[ | Anticipate | 2022 | × | √ | × | i.i.d/non-i.i.d | IC、NLP |
[ | GRA-HE | 2022 | × | √ | × | i.i.d | IC |
[ | RLBFL | 2023 | √ | √ | × | i.i.d | IC |
[ | 3DFed | 2023 | √ | √ | × | non-i.i.d | IC |
[ | BCL | 2023 | √ | √ | × | i.i.d/non-i.i.d | IC |
[ | CerP | 2023 | √ | √ | × | non-i.i.d | IC、L/CRA |
[ | Sniper | 2023 | × | × | √ | i.i.d/non-i.i.d | IC |
[ | TSSO | 2023 | √ | √ | × | non-i.i.d | IC、L/CRA |
[ | A3FL | 2023 | √ | √ | × | non-i.i.d | IC |
[ | IBA | 2023 | × | √ | × | non-i.i.d | IC |
文献 | 名称 | 发表 年份 | 防御 时期 | 对抗假设 | 能力需求 | 应用 | ||||
---|---|---|---|---|---|---|---|---|---|---|
数据分布 | 污染比例 | 访问模型更新 | 客户端操作 | 历史存储 | 额外数据集 | |||||
[ | Weak-DP | 2019 | In | non-i.i.d | 3.3% | √ | × | × | × | IC |
[ | VAE | 2020 | Pre | non-i.i.d | ≤30% | √ | × | × | √ | IC、SA |
[ | DP | 2020 | In | non-i.i.d | ≤5% | √ | × | × | × | IC、NLP |
[ | FoolsGold | 2020 | In | i.i.d/non-i.i.d | — | √ | × | √ | × | IC |
[ | RLR | 2021 | In | i.i.d/non-i.i.d | 10% | √ | × | × | × | IC |
[ | CRFL | 2021 | In | non-i.i.d | ≤4% | √ | × | × | × | L/CRA、IC |
[ | BaFFLe | 2021 | In | non-i.i.d | <50% | √ | √ | √ | × | IC |
[ | FL-WBC | 2021 | In | i.i.d/non-i.i.d | ≤50% | × | √ | × | × | IC |
[ | Neuron Pruning | 2020 | Post | non-i.i.d | ≤10% | √ | √ | × | √ | IC |
[ | FLDetector | 2022 | Pre | non-i.i.d | 28% | √ | × | √ | × | IC |
[ | EVE | 2022 | Pre | non-i.i.d | 40% | √ | × | × | √ | IC |
[ | XMAM | 2022 | Pre | non-i.i.d | <50% | √ | × | × | × | IC |
[ | DeepSight | 2022 | Pre、In | i.i.d/non-i.i.d | ≤45% | √ | × | × | × | IC、NLP、IoTD |
[ | FLAME | 2022 | Pre、In | i.i.d/non-i.i.d | <50% | √ | × | × | × | IC、NLP、IoTD |
[ | RFOut-1d | 2022 | In | non-i.i.d | <1% | √ | × | × | × | IC |
[ | FLARE | 2022 | In | i.i.d/non-i.i.d | ≤30% | √ | × | × | √ | IC |
[ | FedCC | 2022 | In | i.i.d/non-i.i.d | ≤30% | √ | × | × | × | IC |
[ | CAE | 2022 | In | non-i.i.d | — | × | √ | × | × | IC |
[ | FedDetect | 2022 | In | i.i.d | 25% | √ | × | × | × | IC |
[ | KD-Unlearning | 2022 | Post | i.i.d | 10% | √ | × | √ | √ | IC |
[ | PH | 2023 | Pre | non-i.i.d | ≤20% | √ | × | × | √ | IC |
[ | FedGrad | 2023 | Pre | i.i.d/non-i.i.d | 25% | √ | × | × | × | IC |
[ | SLDFL | 2023 | Pre | i.i.d/non-i.i.d | ≤45% | √ | √ | × | √ | IC |
[ | Fed-FA | 2023 | Pre | i.i.d/non-i.i.d | 10% | √ | √ | × | √ | NLP |
[ | DAGUARD | 2023 | Pre、In | non-i.i.d | 40% | √ | √ | × | × | IC |
[ | MITDBA | 2023 | Pre、In | i.i.d/non-i.i.d | ≤50% | √ | × | × | × | IC |
[ | IPCADP | 2023 | In | i.i.d/non-i.i.d | ≤20% | × | √ | × | √ | IC |
[ | DBFL | 2023 | In | i.i.d | 10% | √ | √ | √ | × | IC |
[ | FedMC | 2023 | In | - | ≤100% | √ | × | × | √ | IC |
[ | Lockdown | 2023 | In、Post | i.i.d/non-i.i.d | ≤40% | √ | √ | × | × | IC |
[ | ADFL | 2023 | Post | i.i.d/non-i.i.d | ≤30% | √ | × | × | √ | IC |
Tab. 2 Comparison of backdoor defense methods in FL environment
文献 | 名称 | 发表 年份 | 防御 时期 | 对抗假设 | 能力需求 | 应用 | ||||
---|---|---|---|---|---|---|---|---|---|---|
数据分布 | 污染比例 | 访问模型更新 | 客户端操作 | 历史存储 | 额外数据集 | |||||
[ | Weak-DP | 2019 | In | non-i.i.d | 3.3% | √ | × | × | × | IC |
[ | VAE | 2020 | Pre | non-i.i.d | ≤30% | √ | × | × | √ | IC、SA |
[ | DP | 2020 | In | non-i.i.d | ≤5% | √ | × | × | × | IC、NLP |
[ | FoolsGold | 2020 | In | i.i.d/non-i.i.d | — | √ | × | √ | × | IC |
[ | RLR | 2021 | In | i.i.d/non-i.i.d | 10% | √ | × | × | × | IC |
[ | CRFL | 2021 | In | non-i.i.d | ≤4% | √ | × | × | × | L/CRA、IC |
[ | BaFFLe | 2021 | In | non-i.i.d | <50% | √ | √ | √ | × | IC |
[ | FL-WBC | 2021 | In | i.i.d/non-i.i.d | ≤50% | × | √ | × | × | IC |
[ | Neuron Pruning | 2020 | Post | non-i.i.d | ≤10% | √ | √ | × | √ | IC |
[ | FLDetector | 2022 | Pre | non-i.i.d | 28% | √ | × | √ | × | IC |
[ | EVE | 2022 | Pre | non-i.i.d | 40% | √ | × | × | √ | IC |
[ | XMAM | 2022 | Pre | non-i.i.d | <50% | √ | × | × | × | IC |
[ | DeepSight | 2022 | Pre、In | i.i.d/non-i.i.d | ≤45% | √ | × | × | × | IC、NLP、IoTD |
[ | FLAME | 2022 | Pre、In | i.i.d/non-i.i.d | <50% | √ | × | × | × | IC、NLP、IoTD |
[ | RFOut-1d | 2022 | In | non-i.i.d | <1% | √ | × | × | × | IC |
[ | FLARE | 2022 | In | i.i.d/non-i.i.d | ≤30% | √ | × | × | √ | IC |
[ | FedCC | 2022 | In | i.i.d/non-i.i.d | ≤30% | √ | × | × | × | IC |
[ | CAE | 2022 | In | non-i.i.d | — | × | √ | × | × | IC |
[ | FedDetect | 2022 | In | i.i.d | 25% | √ | × | × | × | IC |
[ | KD-Unlearning | 2022 | Post | i.i.d | 10% | √ | × | √ | √ | IC |
[ | PH | 2023 | Pre | non-i.i.d | ≤20% | √ | × | × | √ | IC |
[ | FedGrad | 2023 | Pre | i.i.d/non-i.i.d | 25% | √ | × | × | × | IC |
[ | SLDFL | 2023 | Pre | i.i.d/non-i.i.d | ≤45% | √ | √ | × | √ | IC |
[ | Fed-FA | 2023 | Pre | i.i.d/non-i.i.d | 10% | √ | √ | × | √ | NLP |
[ | DAGUARD | 2023 | Pre、In | non-i.i.d | 40% | √ | √ | × | × | IC |
[ | MITDBA | 2023 | Pre、In | i.i.d/non-i.i.d | ≤50% | √ | × | × | × | IC |
[ | IPCADP | 2023 | In | i.i.d/non-i.i.d | ≤20% | × | √ | × | √ | IC |
[ | DBFL | 2023 | In | i.i.d | 10% | √ | √ | √ | × | IC |
[ | FedMC | 2023 | In | - | ≤100% | √ | × | × | √ | IC |
[ | Lockdown | 2023 | In、Post | i.i.d/non-i.i.d | ≤40% | √ | √ | × | × | IC |
[ | ADFL | 2023 | Post | i.i.d/non-i.i.d | ≤30% | √ | × | × | √ | IC |
1 | 姚佳伟,郭荣,杨雅兰,等.多元共治下App用户信息泄露风险及应对[J].数字通信世界,2022(6):188-190. |
YAO J W, GUO R, YANG Y L, et al. Risk and countermeasures of App user information disclosure under multiple governance[J]. Digital Communication World, 2022(6):188-190. | |
2 | 冯占英,陈锐,张玉,等.公民个人信息泄露问题现状分析及对策[J].中华医学图书情报杂志,2022,31(6):9-19. |
FENG Z Y, CHEN R, ZHANG Y, et al. Status quo of citizens' personal information leakage and research on countermeasures[J]. Chinese Journal of Medical Library and Information Science, 2022, 31(6):9-19. | |
3 | 肖雄,唐卓,肖斌,等. 联邦学习的隐私保护与安全防御研究综述[J]. 计算机学报, 2023, 46(5):1019-1044. |
XIAO X, TANG Z, XIAO B, et al. A survey on privacy and security issues in federated learning[J]. Chinese Journal of Computers, 2023, 46(5): 1019-1044. | |
4 | BAGDASARYAN E, VEIT A, HUA Y, et al. How to backdoor federated learning[C]// Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics. New York: JMLR, 2020: 2938-2948. |
5 | YOO K Y, KWAK N. Backdoor attacks in federated learning by rare embeddings and gradient ensembling[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2022: 72-88. |
6 | NGUYEN T D, RIEGER P, MIETTINEN M, et al. Poisoning attacks on federated learning-based IoT intrusion detection system[C]// Proceedings of the 2020 Workshop on Decentralized IoT Systems and Security. Reston, VA: Internet Society, 2020: 1-7. |
7 | MENG D, WANG X, WANG J. Backdoor attack against automatic speaker verification models in federated learning[C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
8 | YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): No.12. |
9 | KONEČNÝ J, McMAHAN H B, RAMAGE D, et al. Federated optimization: distributed machine learning for on-device intelligence[EB/OL]. [2023-11-20].. |
10 | GU T, LIU K, DOLAN-GAVITT B, et al. BadNets: evaluating backdooring attacks on deep neural networks[J]. IEEE Access, 2019, 7: 47230-47244. |
11 | 陈学斌,任志强,张宏扬. 联邦学习中的安全威胁与防御措施综述[J]. 计算机应用, 2024, 44(6): 1663-1672. |
CHEN X B, REN Z Q, ZHANG H Y. Review on security threats and defense measures in federated learning[J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. | |
12 | XIE C, HUANG K, CHEN P Y, et al. DBA: distributed backdoor attacks against federated learning[EB/OL]. [2023-11-20]. . |
13 | 顾育豪,白跃彬.联邦学习模型安全与隐私研究进展[J].软件学报,2023,34(6):2833-2864. |
GU Y H, BAI Y B. Survey on security and privacy of federated learning models[J]. Journal of Software, 2023, 34(6):2833-2864. | |
14 | NGUYEN T D, RIEGER P, CHEN H, et al. FLAME: taming backdoors in federated learning[C]// Proceedings of the 31st USENIX Security Symposium. Berkeley: USENIX Association, 2022: 1415-1432. |
15 | WANG Y, ZHAI D H, HAN D, et al. MITDBA: mitigating dynamic backdoor attacks in federated learning for IoT applications[J]. IEEE Internet of Things Journal, 2024, 11(6):10115-10132. |
16 | GONG X, CHEN Y, HUANG H, et al. Coordinated backdoor attacks against federated learning with model-dependent triggers[J]. IEEE Network, 2022, 36(1): 84-90. |
17 | YANG D, LUO S, ZHOU J, et al. Efficient and persistent backdoor attack by boundary trigger set constructing against federated learning[J]. Information Sciences, 2023, 651: No.119743. |
18 | LI H, YE Q, HU H, et al. 3DFeD: adaptive and extensible framework for covert backdoor attack in federated learning[C]// Proceedings of the 2023 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2023: 1893-1907. |
19 | LYU X, HAN Y, WANG W, et al. Poisoning with Cerberus: stealthy and colluded backdoor attack against federated learning[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2023: 9020-9028. |
20 | ZHANG H, JIA J, CHEN J, et al. A3FL: adversarially adaptive backdoor attacks to federated learning[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2023: 61213-61233. |
21 | NGUYEN D T, NGUYEN T, TRAN T A, et al. IBA: towards irreversible backdoor attacks in federated learning[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2023: 66364-66376. |
22 | LIU T, HU X, SHU T. Technical report: assisting backdoor federated learning with whole population knowledge alignment[EB/OL]. [2023-11-18].. |
23 | WANG H, SREENIVASAN K, RAJPUT S, et al. Attack of the tails: yes, you really can backdoor federated learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 16070-16084. |
24 | ZHANG J, CHEN B, CHENG X, et al. PoisonGAN: generative poisoning attacks against federated learning in edge computing systems[J]. IEEE Internet of Things Journal, 2021, 8(5): 3310-3322. |
25 | PANIGRAHI S, BOUACIDA N, MOHAPATRA P. Double momentum backdoor attack in federated learning[J]. Journal of Student Research, 2023, 12(1): No.3644. |
26 | SUN Z, KAIROUZ P, SURESH A T, et al. Can you really backdoor federated learning?[EB/OL]. [2023-09-09]. . |
27 | BHAGOJI A N, CHAKRABORTY S, MITTAL P, et al. Analyzing federated learning through an adversarial lens[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR, 2019: 634-643. |
28 | BARUCH M, BARUCH G, GOLDBERG Y. A little is enough: circumventing defenses for distributed learning[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 8635-8645. |
29 | ZHOU X, XU M, WU Y, et al. Deep model poisoning attack on federated learning[J]. Future Internet, 2021, 13(3): No.73. |
30 | ZHANG Z, PANDA A, SONG L, et al. Neurotoxin: durable backdoors in federated learning[C]// Proceedings of the 39th International Conference on Machine Learning. New York: JMLR, 2022: 26429-26446. |
31 | ZHUANG H, YU M, WANG H, et al. Backdoor federated learning by poisoning backdoor-critical layers[EB/OL]. [2024-06-03]. . |
32 | WEN Y, GEIPING J, FOWL L, et al. Thinking two moves ahead: anticipating other users improves backdoor attacks in federated learning[EB/OL]. [2023-10-20].. |
33 | LI H, WU C, ZHU S, et al. Learning to backdoor federated learning[EB/OL]. [2023-10-25].. |
34 | ABAD G, PAGUADA S, ERSOY O, et al. Sniper backdoor: single client targeted backdoor attack in federated learning[C]// Proceedings of the 2023 IEEE Conference on Secure and Trustworthy Machine Learning. Piscataway: IEEE, 2023: 377-391. |
35 | LIU Y, YI Z, CHEN T. Backdoor attacks and defenses in feature-partitioned collaborative learning[EB/OL]. [2023-09-20].. |
36 | ZOU T, LIU Y, KANG Y, et al. Defending batch-level label inference and replacement attacks in vertical federated learning[J]. IEEE Transactions on Big Data, 2022(Early Access):1-12. |
37 | BLANCHARD P, MHAMDI E M EL, GUERRAOUI R, et al. Machine learning with adversaries: Byzantine tolerant gradient descent[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 118-128. |
38 | YIN D, CHEN Y, KANNAN R, et al. Byzantine-robust distributed learning: towards optimal statistical rates[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR, 2018: 5650-5659. |
39 | NGUYEN T D, NGUYEN T, NGUYEN P L, et al. Backdoor attacks and defenses in federated learning: survey, challenges and future research directions[J]. Engineering Applications of Artificial Intelligence, 2024, 127(Pt A): No.107166. |
40 | RIEGER P, NGUYEN T D, MIETTINEN M, et al. DeepSight: mitigating backdoor attacks in federated learning through deep model inspection[C]// Proceedings of the 2022 Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2020: 1-18. |
41 | MHAMDI E M EL, GUERRAOUI R, ROUAULT S. The hidden vulnerability of distributed learning in Byzantium[C]// Proceedings of the 35th International Conference on Machine Learning. New York: JMLR, 2018: 3521-3530. |
42 | MUÑOZ-GONZÁLEZ L, CO K T, LUPU E C. Byzantine-robust federated machine learning through adaptive model averaging[EB/OL]. [2023-09-09].. |
43 | CAO D, CHANG S, LIN Z, et al. Understanding distributed poisoning attack in federated learning[C]// Proceedings of the IEEE 25th International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2019: 233-239. |
44 | SATTLER F, MÜLLER K R, WIEGAND T, et al. On the Byzantine robustness of clustered federated learning[C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 8861-8865. |
45 | ZHANG Z, CHEN D, ZHOU H, et al. Fed-FA: theoretically modeling client data divergence for federated language backdoor defense[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2023: 62006-62031. |
46 | LIU T, LI M, ZHENG H, et al. Evil vs evil: using adversarial examples to against backdoor attack in federated learning[J]. Multimedia Systems, 2023, 29: 553-568. |
47 | ZHANG J, ZHANG F, JIN Q, et al. XMAM: x-raying models with a matrix to reveal backdoor attacks for federated learning[J]. Digital Communications and Networks, 2023(Early Access): 1-17. |
48 | MA Z, GAO T. Federated learning backdoor attack detection with persistence diagram[J]. Computers and Security, 2024, 136: No.103557. |
49 | PREUVENEERS D, RIMMER V, TSINGENOPOULOS I, et al. Chained anomaly detection models for federated learning: an intrusion detection case study[J]. Applied Sciences, 2018, 8(12): No.2663. |
50 | NGUYEN T D, MARCHAL S, MIETTINEN M, et al. DÏoT: a federated self-learning anomaly detection system for IoT[C]// Proceedings of the IEEE 39th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2019: 756-767. |
51 | LI S, CHENG Y, WANG W, et al. Learning to detect malicious clients for robust federated learning[EB/OL]. [2023-10-03].. |
52 | WANG S, HAYASE J, FANTI G, et al. Towards a defense against federated backdoor attacks under continuous training[J/OL]. Transactions on Machine Learning Research, 2023 [2023-10-03]. . |
53 | ZHANG Z, CAO X, JIA J, et al. FLDetector: defending federated learning against model poisoning attacks via detecting malicious clients[C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 2545-2555. |
54 | LIAN W, ZHANG Y, CHEN X, et al. IPCADP-equalizer: an improved multibalance privacy preservation scheme against backdoor attacks in federated learning[J]. International Journal of Intelligent Systems, 2023, 2023: No.6357750. |
55 | CHEN Y, SU L, XU J. Distributed statistical machine learning in adversarial settings: Byzantine gradient descent[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2017, 1(2): 1-25. |
56 | BERNSTEIN J, ZHAO J, AZIZZADENESHELI K, et al. signSGD with majority vote is communication efficient and fault tolerant [EB/OL]. [2023-10-11]. . |
57 | OZDAYI M S, KANTARCIOGLU M, GEL Y R. Defending against backdoors in federated learning with robust learning rate[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 9268-9276. |
58 | FUNG C, YOON C J M, BESCHASTNIKH I. The limitations of federated learning in sybil settings[C]// Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses. Berkeley: USENIX Association, 2020: 301-316. |
59 | RODRÍGUEZ-BARROSO N, MARTÍNEZ-CÁMARA E, VICTORIA LUZÓN M, et al. Backdoor attacks-resilient aggregation based on robust filtering of outliers in federated learning for image classification[J]. Knowledge-Based Systems, 2022, 245: No.108588. |
60 | WANG N, XIAO Y, CHEN Y, et al. FLARE: defending federated learning against model poisoning attacks via latent space representations[C]// Proceedings of the 2022 ACM Asia Conference on Computer and Communications Security. New York: ACM, 2022: 946-958. |
61 | JEONG H, SON H, LEE S, et al. FedCC: robust federated learning against model poisoning attacks[EB/OL]. [2024-07-15].. |
62 | JIN R, LI X. Backdoor attack and defense in federated generative adversarial network-based medical image synthesis[J]. Medical Image Analysis, 2023, 90: No.102965. |
63 | LI L, QIN J, LUO J. A blockchain-based federated-learning framework for defense against backdoor attack[J]. Electronics, 2023, 12(11): No.2500. |
64 | WANG W, ZHANG C, LIU S, et al. FedMC: federated learning with mode connectivity against distributed backdoor attacks[C]// Proceedings of the 2023 IEEE International Conference on Communications. Piscataway: IEEE, 2023: 4873-4878. |
65 | XIE C, CHEN M, CHEN P Y, et al. CRFL: certifiably robust federated learning against backdoor attacks[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR, 2021: 11372-11382. |
66 | SUN J, LI A, DiVALENTIN L, et al. FL-WBC: enhancing robustness against model poisoning attacks in federated learning from a client perspective[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2021: 12613-12624. |
67 | ANDREINA S, MARSON G A, MÖLLERING H, et al. BaFFLe: backdoor detection via feedback-based federated learning[C]// Proceedings of the IEEE 41st International Conference on Distributed Computing Systems. Piscataway: IEEE, 2021: 852-863. |
68 | HUANG T, HU S, CHOW K H, et al. Lockdown: backdoor defense for federated learning with isolated subspace training[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2023: 10876-10896. |
69 | WU C, YANG X, ZHU S, et al. Mitigating backdoor attacks in federated learning[EB/OL]. [2023-09-18].. |
70 | WU C, ZHU S, MITRA P. Federated unlearning with knowledge distillation[EB/OL]. [2023-10-19]. . |
71 | ZHU C, ZHANG J, SUN X, et al. ADFL: defending backdoor attacks in federated learning via adversarial distillation[J]. Computers and Security, 2023, 132: No.103366. |
72 | NGUYEN T D, NGUYEN A D, NGUYEN T H, et al. FedGrad: mitigating backdoor attacks in federated learning through local ultimate gradients inspection[C]// Proceedings of the 2023 International Joint Conference on Neural Networks. Piscataway: IEEE, 2023: 1-10. |
73 | 余晟兴,陈泽凯,陈钟,等. DAGUARD:联邦学习下的分布式后门攻击防御方案[J]. 通信学报, 2023, 44(5):110-122. |
YU S X, CHEN Z K, CHEN Z, et al. DAGUARD: distributed backdoor attack defense scheme under federated learning[J]. Journal on Communications, 2023, 44(5):110-122. |
[1] | Zheyuan SHEN, Keke YANG, Jing LI. Personalized federated learning method based on dual stream neural network [J]. Journal of Computer Applications, 2024, 44(8): 2319-2325. |
[2] | Zihao YAO, Yuanming LI, Ziqiang MA, Yang LI, Lianggen WEI. Multi-object cache side-channel attack detection model based on machine learning [J]. Journal of Computer Applications, 2024, 44(6): 1862-1871. |
[3] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[4] | Peiqian LIU, Shuilian WANG, Zihao SHEN, Hui WANG. Location privacy protection algorithm based on trajectory perturbation and road network matching [J]. Journal of Computer Applications, 2024, 44(5): 1546-1554. |
[5] | Gaimei GAO, Jin ZHANG, Chunxia LIU, Weichao DANG, Shangwang BAI. Privacy protection scheme for crowdsourced testing tasks based on blockchain and CP-ABE policy hiding [J]. Journal of Computer Applications, 2024, 44(3): 811-818. |
[6] | Wei SHE, Yang LI, Lihong ZHONG, Defeng KONG, Zhao TIAN. Hyperparameter optimization for neural network based on improved real coding genetic algorithm [J]. Journal of Computer Applications, 2024, 44(3): 671-676. |
[7] | Yi ZHENG, Cunyi LIAO, Tianqian ZHANG, Ji WANG, Shouyin LIU. Image denoising-based cell-level RSRP estimation method for urban areas [J]. Journal of Computer Applications, 2024, 44(3): 855-862. |
[8] | Haifeng MA, Yuxia LI, Qingshui XUE, Jiahai YANG, Yongfu GAO. Attribute-based encryption scheme for blockchain privacy protection [J]. Journal of Computer Applications, 2024, 44(2): 485-489. |
[9] | Rui GAO, Xuebin CHEN, Zucuan ZHANG. Dynamic social network privacy publishing method for partial graph updating [J]. Journal of Computer Applications, 2024, 44(12): 3831-3838. |
[10] | Miao JIA, Zhongyuan YAO, Weihua ZHU, Tingting GAO, Xueming SI, Xiang DENG. Progress and prospect of zero-knowledge proof enabling blockchain [J]. Journal of Computer Applications, 2024, 44(12): 3669-3677. |
[11] | Yifan WANG, Shaofu LIN, Yunjiang LI. Highway free-flow tolling method based on blockchain and zero-knowledge proof [J]. Journal of Computer Applications, 2024, 44(12): 3741-3750. |
[12] | Yiting WANG, Wunan WAN, Shibin ZHANG, Jinquan ZHANG, Zhi QIN. Linkable ring signature scheme based on SM9 algorithm [J]. Journal of Computer Applications, 2024, 44(12): 3709-3716. |
[13] | Jing LIANG, Wunan WAN, Shibin ZHANG, Jinquan ZHANG, Zhi QIN. Traceability storage model of charity system oriented to master-slave chain [J]. Journal of Computer Applications, 2024, 44(12): 3751-3758. |
[14] | Peng FANG, Fan ZHAO, Baoquan WANG, Yi WANG, Tonghai JIANG. Development, technologies and applications of blockchain 3.0 [J]. Journal of Computer Applications, 2024, 44(12): 3647-3657. |
[15] | Jie WU, Xuezhong QIAN, Wei SONG. Personalized federated learning based on similarity clustering and regularization [J]. Journal of Computer Applications, 2024, 44(11): 3345-3353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||