Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (2): 403-410.DOI: 10.11772/j.issn.1001-9081.2024010070
• Artificial intelligence • Previous Articles
Binhong XIE1, Wanyin GAO1(), Wangdong LU2, Yingjun ZHANG1, Rui ZHANG1
Received:
2024-01-22
Revised:
2024-03-27
Accepted:
2024-03-29
Online:
2024-05-09
Published:
2025-02-10
Contact:
Wanyin GAO
About author:
XIE Binhong, born in 1971, M. S., professor. His research interests include intelligent software engineering, machine learning.Supported by:
通讯作者:
高婉银
作者简介:
谢斌红(1971—),男,山西运城人,教授,硕士,CCF会员,主要研究方向:智能化软件工程、机器学习基金资助:
CLC Number:
Binhong XIE, Wanyin GAO, Wangdong LU, Yingjun ZHANG, Rui ZHANG. Dense object counting network with few-shot similarity matching feature enhancement[J]. Journal of Computer Applications, 2025, 45(2): 403-410.
谢斌红, 高婉银, 陆望东, 张英俊, 张睿. 小样本相似性匹配特征增强的密集目标计数网络[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 403-410.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010070
方法 | 验证集 | 测试集 | ||
---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |
Mean | 53.38 | 124.53 | 47.55 | 147.67 |
Median | 48.68 | 129.70 | 47.73 | 152.46 |
FR few-shot detector[ | 45.45 | 112.53 | 41.64 | 141.04 |
FSOD few-shot detector[ | 36.36 | 115.00 | 32.53 | 140.65 |
GMN[ | 29.66 | 89.81 | 26.52 | 124.57 |
MAML[ | 25.54 | 79.44 | 24.90 | 112.68 |
FamNet[ | 23.75 | 69.07 | 22.08 | 99.54 |
CFOCNet[ | 21.19 | 61.41 | 22.10 | 112.71 |
BMNet+[ | 15.74 | 58.53 | 14.62 | 91.83 |
SAFECount[ | 15.28 | 47.20 | 14.32 | 85.54 |
SMFENet | 13.82 | 45.91 | 14.01 | 84.93 |
Tab. 1 Comparison of experimental results of SMFENet and few-shot counting methods
方法 | 验证集 | 测试集 | ||
---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |
Mean | 53.38 | 124.53 | 47.55 | 147.67 |
Median | 48.68 | 129.70 | 47.73 | 152.46 |
FR few-shot detector[ | 45.45 | 112.53 | 41.64 | 141.04 |
FSOD few-shot detector[ | 36.36 | 115.00 | 32.53 | 140.65 |
GMN[ | 29.66 | 89.81 | 26.52 | 124.57 |
MAML[ | 25.54 | 79.44 | 24.90 | 112.68 |
FamNet[ | 23.75 | 69.07 | 22.08 | 99.54 |
CFOCNet[ | 21.19 | 61.41 | 22.10 | 112.71 |
BMNet+[ | 15.74 | 58.53 | 14.62 | 91.83 |
SAFECount[ | 15.28 | 47.20 | 14.32 | 85.54 |
SMFENet | 13.82 | 45.91 | 14.01 | 84.93 |
方法 | 是否微调 | MAE | RMSE |
---|---|---|---|
SAFECount | × | 16.66 | 24.08 |
√ | 5.33 | 7.04 | |
SMFENet | × | 7.60 | 10.25 |
√ | 4.16 | 5.91 |
Tab. 2 Comparison of experimental results of SMFENet and vehicle counting method
方法 | 是否微调 | MAE | RMSE |
---|---|---|---|
SAFECount | × | 16.66 | 24.08 |
√ | 5.33 | 7.04 | |
SMFENet | × | 7.60 | 10.25 |
√ | 4.16 | 5.91 |
方法 | MAE | RMSE | GFLOPs | 帧率/(frame·s-1) |
---|---|---|---|---|
SMFENet(fixed-5) | 19.26 | 59.07 | 4.8 | 30.0 |
SMFENet(neighbor) | 17.50 | 57.11 | 6.5 | 25.0 |
SMFENet | 13.82 | 45.91 | 7.0 | 21.0 |
Tab. 3 Performance comparison of various Ground-Truth density map generation methods
方法 | MAE | RMSE | GFLOPs | 帧率/(frame·s-1) |
---|---|---|---|---|
SMFENet(fixed-5) | 19.26 | 59.07 | 4.8 | 30.0 |
SMFENet(neighbor) | 17.50 | 57.11 | 6.5 | 25.0 |
SMFENet | 13.82 | 45.91 | 7.0 | 21.0 |
样例数 | MAE | RMSE |
---|---|---|
1 | 17.37 | 60.10 |
2 | 14.71 | 49.04 |
3 | 13.82 | 45.91 |
Tab. 4 Influence of sample size on counting accuracy
样例数 | MAE | RMSE |
---|---|---|
1 | 17.37 | 60.10 |
2 | 14.71 | 49.04 |
3 | 13.82 | 45.91 |
组件 | 评价指标 | |||
---|---|---|---|---|
SCFEM— | FEM | 自适应损失 | MAE | RMSE |
× | × | × | 20.45 | 61.71 |
√ | × | × | 17.21 | 56.81 |
√ | √ | × | 14.52 | 48.94 |
√ | √ | √ | 13.82 | 45.91 |
Tab. 5 Ablation experimental results
组件 | 评价指标 | |||
---|---|---|---|---|
SCFEM— | FEM | 自适应损失 | MAE | RMSE |
× | × | × | 20.45 | 61.71 |
√ | × | × | 17.21 | 56.81 |
√ | √ | × | 14.52 | 48.94 |
√ | √ | √ | 13.82 | 45.91 |
处理方式 | 特征组合方法 | 评价指标 | |||||
---|---|---|---|---|---|---|---|
拼接 | 逐元素相加 | XS | XI+ XS | XM+ XS | XI+ XM+ XS | MAE | RMSE |
× | × | √ | × | × | × | 17.21 | 56.81 |
√ | × | × | √ | × | × | 15.26 | 52.07 |
√ | × | × | × | √ | × | 14.90 | 50.68 |
√ | × | × | × | × | √ | 13.82 | 45.91 |
× | √ | × | √ | × | × | 16.38 | 54.57 |
× | √ | × | × | √ | × | 15.71 | 52.90 |
× | √ | × | × | × | √ | 14.31 | 48.27 |
Tab. 6 Performance comparison of different feature combinations and corresponding processing methods within the FEM
处理方式 | 特征组合方法 | 评价指标 | |||||
---|---|---|---|---|---|---|---|
拼接 | 逐元素相加 | XS | XI+ XS | XM+ XS | XI+ XM+ XS | MAE | RMSE |
× | × | √ | × | × | × | 17.21 | 56.81 |
√ | × | × | √ | × | × | 15.26 | 52.07 |
√ | × | × | × | √ | × | 14.90 | 50.68 |
√ | × | × | × | × | √ | 13.82 | 45.91 |
× | √ | × | √ | × | × | 16.38 | 54.57 |
× | √ | × | × | √ | × | 15.71 | 52.90 |
× | √ | × | × | × | √ | 14.31 | 48.27 |
方法 | Fold 0 | Fold 1 | Fold 2 | Fold 3 | 平均 | |||||
---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
{60}(Baseline) | 29.13 | 111.68 | 21.11 | 45.75 | 23.78 | 117.94 | 26.16 | 75.45 | 25.05 | 87.71 |
{60}+PPM[ | 28.03 | 93.65 | 19.01 | 30.67 | 23.88 | 121.10 | 25.36 | 65.34 | 24.07 | 77.69 |
{60}+ASPP[ | 25.83 | 82.31 | 19.01 | 32.67 | 24.18 | 127.58 | 27.56 | 92.68 | 24.15 | 83.81 |
{60,6,3,2,1} | 24.63 | 72.19 | 19.41 | 33.13 | 22.89 | 106.52 | 25.56 | 67.16 | 23.12 | 69.75 |
{60,30} | 28.40 | 95.10 | 19.61 | 34.40 | 22.28 | 101.72 | 25.56 | 67.16 | 23.96 | 74.60 |
{60,30,15} | 26.83 | 90.16 | 19.41 | 33.13 | 22.40 | 102.10 | 23.66 | 53.31 | 23.08 | 69.68 |
{60,30,15,8} | 24.03 | 68.70 | 18.51 | 28.68 | 22.28 | 101.72 | 22.96 | 46.52 | 21.95 | 61.41 |
{60,30,15,8,4} | 24.73 | 72.87 | 18.57 | 28.48 | 22.88 | 106.84 | 22.06 | 40.89 | 22.06 | 62.27 |
{60,30,15,8}-WO | 25.53 | 79.81 | 20.01 | 36.89 | 23.28 | 112.18 | 22.96 | 46.32 | 22.95 | 68.80 |
Tab. 7 Comparison of experimental results of FEM, PPM and ASPP of different sizes
方法 | Fold 0 | Fold 1 | Fold 2 | Fold 3 | 平均 | |||||
---|---|---|---|---|---|---|---|---|---|---|
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | |
{60}(Baseline) | 29.13 | 111.68 | 21.11 | 45.75 | 23.78 | 117.94 | 26.16 | 75.45 | 25.05 | 87.71 |
{60}+PPM[ | 28.03 | 93.65 | 19.01 | 30.67 | 23.88 | 121.10 | 25.36 | 65.34 | 24.07 | 77.69 |
{60}+ASPP[ | 25.83 | 82.31 | 19.01 | 32.67 | 24.18 | 127.58 | 27.56 | 92.68 | 24.15 | 83.81 |
{60,6,3,2,1} | 24.63 | 72.19 | 19.41 | 33.13 | 22.89 | 106.52 | 25.56 | 67.16 | 23.12 | 69.75 |
{60,30} | 28.40 | 95.10 | 19.61 | 34.40 | 22.28 | 101.72 | 25.56 | 67.16 | 23.96 | 74.60 |
{60,30,15} | 26.83 | 90.16 | 19.41 | 33.13 | 22.40 | 102.10 | 23.66 | 53.31 | 23.08 | 69.68 |
{60,30,15,8} | 24.03 | 68.70 | 18.51 | 28.68 | 22.28 | 101.72 | 22.96 | 46.52 | 21.95 | 61.41 |
{60,30,15,8,4} | 24.73 | 72.87 | 18.57 | 28.48 | 22.88 | 106.84 | 22.06 | 40.89 | 22.06 | 62.27 |
{60,30,15,8}-WO | 25.53 | 79.81 | 20.01 | 36.89 | 23.28 | 112.18 | 22.96 | 46.32 | 22.95 | 68.80 |
1 | 刘春磊,陈天恩,王聪,等. 小样本目标检测研究综述[J]. 计算机科学与探索, 2023, 17(1):53-73. |
LIU C L, CHEN T E, WANG C, et al. Survey of few-shot object detection[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1):53-73. | |
2 | SAM D B, SAJJAN N N, BABU R V, et al. Divide and grow: capturing huge diversity in crowd images with incrementally growing CNN[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:3618-3626. |
3 | MUNDHENK T N, KONJEVOD G, SAKLA W A, et al. A large contextual dataset for classification,detection and counting of cars with deep learning[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9907. Cham: Springer, 2016:785-800. |
4 | ARTETA C, LEMPITSKY V, ZISSERMAN A. Counting in the wild[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9911. Cham: Springer, 2016: 483-498. |
5 | XIE W, NOBLE J A, ZISSERMAN A. Microscopy cell counting and detection with fully convolutional regression networks[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6(3): 283-292. |
6 | RAHNEMOONFAR M, SHEPPARD C. Deep count: fruit counting based on deep simulated learning[J]. Sensors, 2017, 17(4): No.905. |
7 | 赵凯琳,靳小龙,王元卓. 小样本学习研究综述[J]. 软件学报, 2021, 32(2):349-369. |
ZHAO K L, JIN X L, WANG Y Z. Survey on few-shot learning[J]. Journal of Software, 2021, 32(2):349-369. | |
8 | YANG S D, SU H T, HSU W H, et al. Class-agnostic few-shot object counting[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 870-878. |
9 | RANJAN V, SHARMA U, NGUYEN T, et al. Learning to count everything[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3393-3402. |
10 | ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]// Proceedings of the 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 589-597. |
11 | HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal network[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4145-4153. |
12 | KIM T, PAIK J. Intelligent video surveillance with abandoned object detection and multiple pedestrian counting[C]// Proceedings of the SPIE 7542, Multimedia on Mobile Devices 2010. Bellingham, WA: SPIE, 2010: No.75420K. |
13 | ATKINS D C, GALLOP R J. Rethinking how family researchers model infrequent outcomes: a tutorial on count regression and zero-inflated models[J]. Journal of Family Psychology, 2007, 21(4): 726-735. |
14 | OÑORO-RUBIO D, LÓPEZ-SASTRE R J. Towards perspective-free object counting with deep learning[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9911. Cham: Springer, 2016: 615-629. |
15 | LU E, XIE W, ZISSERMAN. Class-agnostic counting[C]// Proceedings of the 2018 Asian Conference on Computer Vision, LNCS 11363. Cham: Springer, 2019:669-684. |
16 | SHI M, LU H, FENG C, et al. Represent, compare, and learn: a similarity-aware framework for class-agnostic counting[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2022: 9529-9538. |
17 | YOU Z, YANG K, LUO W, et al. Few-shot object counting with similarity-aware feature enhancement[C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 6304-6313. |
18 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
19 | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6230-6239. |
20 | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. |
21 | VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5000-5008. |
22 | WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:1328-1338. |
23 | KANG B, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428. |
24 | FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4012-4021. |
25 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1126-1135. |
[1] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[2] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[3] | Xinyan YU, Cheng ZENG, Qian WANG, Peng HE, Xiaoyu DING. Few-shot news topic classification method based on knowledge enhancement and prompt learning [J]. Journal of Computer Applications, 2024, 44(6): 1767-1774. |
[4] | Li XIE, Weiping SHU, Junjie GENG, Qiong WANG, Hailin YANG. Few-shot cervical cell classification combining weighted prototype and adaptive tensor subspace [J]. Journal of Computer Applications, 2024, 44(10): 3200-3208. |
[5] | Xiaomin ZHOU, Fei TENG, Yi ZHANG. Automatic international classification of diseases coding model based on meta-network [J]. Journal of Computer Applications, 2023, 43(9): 2721-2726. |
[6] | Bihui YU, Xingye CAI, Jingxuan WEI. Few-shot text classification method based on prompt learning [J]. Journal of Computer Applications, 2023, 43(9): 2735-2740. |
[7] | Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network [J]. Journal of Computer Applications, 2023, 43(8): 2325-2329. |
[8] | Renjie XU, Baodi LIU, Kai ZHANG, Weifeng LIU. Model agnostic meta learning algorithm based on Bayesian weight function [J]. Journal of Computer Applications, 2022, 42(3): 708-712. |
[9] | DU Yan, LYU Liangfu, JIAO Yichen. Fuzzy prototype network based on fuzzy reasoning [J]. Journal of Computer Applications, 2021, 41(7): 1885-1890. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||