Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (10): 3200-3208.DOI: 10.11772/j.issn.1001-9081.2023101416
• Multimedia computing and computer simulation • Previous Articles Next Articles
Li XIE1(), Weiping SHU1, Junjie GENG1, Qiong WANG2, Hailin YANG3
Received:
2023-10-19
Revised:
2023-12-21
Accepted:
2023-12-22
Online:
2024-10-15
Published:
2024-10-10
Contact:
Li XIE
About author:
SHU Weiping, born in 1998, M. S. candidate. His research interests include deep learning, image processing.Supported by:
通讯作者:
谢莉
作者简介:
谢莉(1985—),女,重庆人,副教授,博士,主要研究方向:图像处理、软测量建模、系统辨识 xieli@jiangnan.edu.cn基金资助:
CLC Number:
Li XIE, Weiping SHU, Junjie GENG, Qiong WANG, Hailin YANG. Few-shot cervical cell classification combining weighted prototype and adaptive tensor subspace[J]. Journal of Computer Applications, 2024, 44(10): 3200-3208.
谢莉, 舒卫平, 耿俊杰, 王琼, 杨海麟. 结合加权原型和自适应张量子空间的小样本宫颈细胞分类[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3200-3208.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101416
数据属性 | 类别 | 图像数 |
---|---|---|
元训练集 | 轻度非典型增生 | 182 |
中度非典型增生 | 146 | |
重度非典型增生 | 197 | |
原位癌 | 150 | |
元测试集 | 浅表鳞状上皮 | 74 |
中层鳞状上皮 | 70 | |
柱状上皮 | 98 |
Tab. 1 Distribution of Herlev cervical cell image dataset
数据属性 | 类别 | 图像数 |
---|---|---|
元训练集 | 轻度非典型增生 | 182 |
中度非典型增生 | 146 | |
重度非典型增生 | 197 | |
原位癌 | 150 | |
元测试集 | 浅表鳞状上皮 | 74 |
中层鳞状上皮 | 70 | |
柱状上皮 | 98 |
特征提取网络 | 参数量/106 | 分类准确度/% | |||||
---|---|---|---|---|---|---|---|
2-way 3-shot | 2-way 5-shot | 2-way 10-shot | 3-way 3-shot | 3-way 5-shot | 3-way 10-shot | ||
Conv_64F | 0.113 | 94.56±0.77 | 95.43±0.69 | 96.10±0.54 | 88.14±0.62 | 90.12±0.45 | 91.58±0.38 |
ResNet-7 | 1.219 | 93.94±0.90 | 94.88±0.79 | 95.75±0.54 | 86.26±0.73 | 89.24±0.55 | 90.68±0.48 |
ResNet-12 | 8.008 | 89.13±1.20 | 90.65±1.17 | 91.16±1.04 | 78.23±0.84 | 80.59±0.75 | 82.67±0.61 |
Tab. 2 Classification results corresponding to different feature extraction networks
特征提取网络 | 参数量/106 | 分类准确度/% | |||||
---|---|---|---|---|---|---|---|
2-way 3-shot | 2-way 5-shot | 2-way 10-shot | 3-way 3-shot | 3-way 5-shot | 3-way 10-shot | ||
Conv_64F | 0.113 | 94.56±0.77 | 95.43±0.69 | 96.10±0.54 | 88.14±0.62 | 90.12±0.45 | 91.58±0.38 |
ResNet-7 | 1.219 | 93.94±0.90 | 94.88±0.79 | 95.75±0.54 | 86.26±0.73 | 89.24±0.55 | 90.68±0.48 |
ResNet-12 | 8.008 | 89.13±1.20 | 90.65±1.17 | 91.16±1.04 | 78.23±0.84 | 80.59±0.75 | 82.67±0.61 |
算法 | 分类准确度 | |||||
---|---|---|---|---|---|---|
2-way 3-shot | 2-way 5-shot | 2-way 10-shot | 3-way 3-shot | 3-way 5-shot | 3-way 10-shot | |
ProtoNet[ | 87.10±0.94 | 90.06±0.72 | 92.25±0.65 | 78.62±0.65 | 81.54±0.60 | 87.08±0.49 |
DSN[ | 89.27±0.88 | 91.34±0.77 | 93.26±0.79 | 79.92±0.77 | 83.44±0.58 | 87.31±0.47 |
RelationNet[ | 85.22±1.04 | 88.20±0.65 | 89.69±0.56 | 68.76±0.74 | 73.35±0.58 | 77.34±0.49 |
RegressionNet[ | 89.68±0.96 | 91.15±0.83 | 93.16±0.71 | 79.53±0.82 | 83.65±0.64 | 87.72±0.46 |
MML[ | 90.46±0.76 | 92.01±0.62 | 93.52±0.53 | 80.99±0.52 | 84.02±0.41 | 87.98±0.33 |
TDE-FSL[ | 88.16±0.88 | 91.21±0.67 | 92.88±0.61 | 80.11±0.61 | 83.26±0.55 | 88.16±0.46 |
DeepBDC[ | 90.61±0.92 | 92.35±0.69 | 93.67±0.56 | 80.81±0.69 | 84.25±0.61 | 88.35±0.55 |
APP2S[ | 90.16±0.71 | 91.91±0.65 | 93.01±0.49 | 80.92±0.54 | 84.36±0.43 | 88.42±0.37 |
本文算法 | 94.56±0.77 | 95.43±0.69 | 96.10±0.54 | 88.14±0.62 | 90.12±0.45 | 91.58±0.38 |
Tab. 3 Comparison results between proposed algorithm and classical algorithms
算法 | 分类准确度 | |||||
---|---|---|---|---|---|---|
2-way 3-shot | 2-way 5-shot | 2-way 10-shot | 3-way 3-shot | 3-way 5-shot | 3-way 10-shot | |
ProtoNet[ | 87.10±0.94 | 90.06±0.72 | 92.25±0.65 | 78.62±0.65 | 81.54±0.60 | 87.08±0.49 |
DSN[ | 89.27±0.88 | 91.34±0.77 | 93.26±0.79 | 79.92±0.77 | 83.44±0.58 | 87.31±0.47 |
RelationNet[ | 85.22±1.04 | 88.20±0.65 | 89.69±0.56 | 68.76±0.74 | 73.35±0.58 | 77.34±0.49 |
RegressionNet[ | 89.68±0.96 | 91.15±0.83 | 93.16±0.71 | 79.53±0.82 | 83.65±0.64 | 87.72±0.46 |
MML[ | 90.46±0.76 | 92.01±0.62 | 93.52±0.53 | 80.99±0.52 | 84.02±0.41 | 87.98±0.33 |
TDE-FSL[ | 88.16±0.88 | 91.21±0.67 | 92.88±0.61 | 80.11±0.61 | 83.26±0.55 | 88.16±0.46 |
DeepBDC[ | 90.61±0.92 | 92.35±0.69 | 93.67±0.56 | 80.81±0.69 | 84.25±0.61 | 88.35±0.55 |
APP2S[ | 90.16±0.71 | 91.91±0.65 | 93.01±0.49 | 80.92±0.54 | 84.36±0.43 | 88.42±0.37 |
本文算法 | 94.56±0.77 | 95.43±0.69 | 96.10±0.54 | 88.14±0.62 | 90.12±0.45 | 91.58±0.38 |
算法 | 主干网络 | 分类准确度 | |||||
---|---|---|---|---|---|---|---|
2-way 3-shot | 2-way 5-shot | 2-way 10-shot | 3-way 3-shot | 3-way 5-shot | 3-way 10-shot | ||
MetaMed[ | Conv_32F | 90.12 | 91.21 | 93.37 | 75.08 | 80.00 | 84.08 |
PFEMed[ | 双路WRN-28-10 | 94.21±0.81 | 95.05±0.71 | 95.46±0.58 | 87.62±0.67 | 90.03±0.51 | 92.11±0.44 |
本文算法 | Conv_64F | 94.56±0.77 | 95.43±0.69 | 96.10±0.54 | 88.14±0.62 | 90.12±0.45 | 91.58±0.38 |
Tab. 4 Comparison results with classification algorithms for few-shot cervical cells in literature
算法 | 主干网络 | 分类准确度 | |||||
---|---|---|---|---|---|---|---|
2-way 3-shot | 2-way 5-shot | 2-way 10-shot | 3-way 3-shot | 3-way 5-shot | 3-way 10-shot | ||
MetaMed[ | Conv_32F | 90.12 | 91.21 | 93.37 | 75.08 | 80.00 | 84.08 |
PFEMed[ | 双路WRN-28-10 | 94.21±0.81 | 95.05±0.71 | 95.46±0.58 | 87.62±0.67 | 90.03±0.51 | 92.11±0.44 |
本文算法 | Conv_64F | 94.56±0.77 | 95.43±0.69 | 96.10±0.54 | 88.14±0.62 | 90.12±0.45 | 91.58±0.38 |
模型 | 预训练 | 加权原型 | 张量子空间 | 原型修正 | 分类准确度 | |||||
---|---|---|---|---|---|---|---|---|---|---|
2-way 3-shot | 2-way 5-shot | 2-way 10-shot | 3-way 3-shot | 3-way 5-shot | 3-way 10-shot | |||||
Ⅰ | 87.10±0.94 | 90.06±0.72 | 92.25±0.65 | 78.62±0.65 | 81.54±0.60 | 87.08±0.49 | ||||
Ⅱ | √ | 89.41±1.10 | 91.76±0.89 | 93.68±0.60 | 83.13±0.69 | 87.97±0.49 | 88.26±0.43 | |||
Ⅲ | √ | √ | 89.61±0.96 | 92.46±0.65 | 94.42±0.54 | 83.51±0.66 | 88.20±0.47 | 88.89±0.50 | ||
Ⅳ | √ | √ | √ | 91.99±0.84 | 94.46±0.68 | 95.63±0.50 | 85.26±0.62 | 88.90±0.46 | 91.21±0.39 | |
Ⅴ | √ | √ | √ | √ | 94.56±0.77 | 95.43±0.69 | 96.10±0.54 | 88.14±0.62 | 90.12±0.45 | 91.58±0.38 |
Tab. 5 Results of ablation experiments on few-shot Herlev dataset
模型 | 预训练 | 加权原型 | 张量子空间 | 原型修正 | 分类准确度 | |||||
---|---|---|---|---|---|---|---|---|---|---|
2-way 3-shot | 2-way 5-shot | 2-way 10-shot | 3-way 3-shot | 3-way 5-shot | 3-way 10-shot | |||||
Ⅰ | 87.10±0.94 | 90.06±0.72 | 92.25±0.65 | 78.62±0.65 | 81.54±0.60 | 87.08±0.49 | ||||
Ⅱ | √ | 89.41±1.10 | 91.76±0.89 | 93.68±0.60 | 83.13±0.69 | 87.97±0.49 | 88.26±0.43 | |||
Ⅲ | √ | √ | 89.61±0.96 | 92.46±0.65 | 94.42±0.54 | 83.51±0.66 | 88.20±0.47 | 88.89±0.50 | ||
Ⅳ | √ | √ | √ | 91.99±0.84 | 94.46±0.68 | 95.63±0.50 | 85.26±0.62 | 88.90±0.46 | 91.21±0.39 | |
Ⅴ | √ | √ | √ | √ | 94.56±0.77 | 95.43±0.69 | 96.10±0.54 | 88.14±0.62 | 90.12±0.45 | 91.58±0.38 |
1 | 中国抗癌协会妇科肿瘤专业委员会. 宫颈癌诊断与治疗指南(第四版)[J]. 中国实用妇科与产科杂志, 2018, 34(6): 613-622. |
Gynecological Oncology Professional Committee of China Anti-Cancer Association. Guidelines for the diagnosis and treatment of cervical cancer (fourth edition) [J]. Chinese Journal of Practical Gynecology and Obstetrics, 2018, 34(6): 613-622. | |
2 | SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2017[J]. CA: A Cancer Journal for Clinicians, 2017, 67(1): 7-30. |
3 | 韩颖, 赵萌, 陈胜勇,等. 基于最大截面特征的病变宫颈细胞核的自动筛查[J]. 计算机应用, 2019, 39(4): 1189-1195. |
HAN Y, ZHAO M, CHEN S Y, et al. Automatic screening of abnormal cervical nucleus based on maximum section feature[J]. Journal of Computer Applications, 2019, 39(4): 1189-1195. | |
4 | WANG P, WANG L, LI Y, et al. Automatic cell nuclei segmentation and classification of cervical Pap smear images[J]. Biomedical Signal Processing and Control, 2019, 48: 93-103. |
5 | 赵越, 曾立波, 吴琼水. 卷积神经网络的宫颈细胞图像分类[J]. 计算机辅助设计与图形学学报, 2018, 30(11): 2049-2054. |
ZHAO Y, ZENG L B, WU Q S. Classification of cervical cells based on convolution neural network[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(11): 2049-2054. | |
6 | 杨洪刚, 陈洁洁, 徐梦飞. 双线性内卷神经网络用于眼底疾病图像分类[J]. 计算机应用, 2023, 43(1): 259-264. |
YANG H G, CHEN J J, XU M F. Bilinear involution neural network for image classification of fundus diseases[J]. Journal of Computer Applications, 2023, 43(1): 259-264. | |
7 | 周迪, 张自力, 陈佳,等. 基于EfficientNetV2和物体上下文表示的胃癌图像分割方法[J]. 计算机应用, 2023, 43(9): 2955-2962. |
ZHOU D, ZHANG Z L, CHEN J, et al. Stomach cancer image segmentation method based on EfficientNetV2 and object-contextual representation[J]. Journal of Computer Applications, 2023, 43(9): 2955-2962. | |
8 | 胡卉, 蔡金清. 基于深度卷积神经网络的宫颈细胞涂片的病变细胞分类[J]. 软件工程, 2018, 21(8): 19-22. |
HU H, CAI J Q. Lesion cell classification of cervical smear based on deep convolution neural network[J]. Software Engineering, 2018, 21(8): 19-22. | |
9 | SHI J, WANG R, ZHENG Y, et al. Cervical cell classification with graph convolutional network[J]. Computer Methods and Programs in Biomedicine, 2021, 198: 105807. |
10 | JIA A D, LI B Z, ZHANG C C. Detection of cervical cancer cells based on strong feature CNN-SVM network[J]. Neurocomputing, 2020, 411: 112-127. |
11 | 董阳, 潘海为, 崔倩娜,等. 面向多模态磁共振脑瘤图像的小样本分割方法[J]. 计算机应用, 2021, 41(4): 1049-1054. |
DONG Y, PAN H W, CUI Q N, et al. Few-shot segmentation method for multi-modal magnetic resonance images of brain tumor[J]. Journal of Computer Applications, 2021, 41(4): 1049-1054. | |
12 | JIANG W, HUANG K, GENG J, et al. Multi-scale metric learning for few-shot learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(3): 1091-1102. |
13 | JIANG H, GAO M, LI H, et al. Multi-learner based deep meta-learning for few-shot medical image classification[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(1): 17-28. |
14 | SINGH R, BHARTI V, PUROHIT V, et al. MetaMed: few-shot medical image classification using gradient-based meta-learning[J]. Pattern Recognition, 2021, 120: 108111. |
15 | DAI Z, YI J, YAN L, et al. PFEMed: few-shot medical image classification using prior guided feature enhancement[J]. Pattern Recognition, 2023, 134: 109108. |
16 | 安胜彪, 郭昱岐, 白宇,等. 小样本图像分类研究综述[J]. 计算机科学与探索, 2023, 17(3): 511-532. |
AN S B, GUO Y Q, BAI Y, et al. Survey of few-shot image classification research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. | |
17 | ZHANG R, CHE T, GHAHRAMANI Z, et al. MetaGAN: an adversarial approach to few-shot learning[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2018: 2371-2380. |
18 | FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1126-1135. |
19 | RUSU A A, RAO D, SYGNOWSKI J, et al. Meta-learning with latent embedding optimization [EB/OL]. [2023-12-16]. . |
20 | VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2016: 3637-3645. |
21 | SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2017: 4080-4090. |
22 | ORESHKIN B, RODRÍGUEZ LÓPEZ P, LACOSTE A. TADAM: task dependent adaptive metric for improved few-shot learning[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2018: 719-729. |
23 | JI Z, CHAI X, YU Y, et al. Improved prototypical networks for few-shot learning[J]. Pattern Recognition Letters, 2020, 140: 81-87. |
24 | YANG L, LI L, ZHANG Z, et al. DPGN: distribution propagation graph network for few-shot learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13387-13396. |
25 | HOU R, CHANG H, MA B, et al. Cross attention network for few-shot classification[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2019: 4003-4014. |
26 | SIMON C, KONIUSZ P, NOCK R, et al. Adaptive subspaces for few-shot learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4135-4144. |
27 | TIAN Y, WANG Y, KRISHNAN D, et al. Rethinking few-shot image classification: a good embedding is all you need? [C]// Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 266-282. |
28 | LAENEN S, BERTINETTO L. On episodes, prototypical networks, and few-shot learning[J]. Advances in Neural Information Processing Systems, 2021, 34: 24581-24592. |
29 | GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test[J]. The Journal of Machine Learning Research, 2012, 13: 723-773. |
30 | KIM B, KHANNA R, KOYEJO O. Examples are not enough, learn to criticize! Criticism for interpretability[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2016: 2288-2296. |
31 | LU H, PLATANIOTIS K N, VENETSANOPOULOS A N. MPCA: multilinear principal component analysis of tensor objects[J]. IEEE Transactions on Neural Networks, 2008, 19(1): 18-39. |
32 | JANTZEN J, NORUP J, DOUNIAS G, et al. Pap-smear benchmark data for pattern classification[C]// Proceedings of the 2015 Nature Inspired Smart Information System: EU Co-ordination Action. Albufeira, Portugal: NiSIS, 2005: 1-9. |
33 | SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1199-1208. |
34 | DEVOS A, GROSSGLAUSER M. Regression networks for meta-learning few-shot classification [EB/OL]. [2023-12-16]. . |
35 | CHEN H, LI H, LI Y, et al. Multi-level metric learning for few-shot image recognition[C]// Proceedings of the 31st International Conference on Artificial Neural Networks. Cham: Springer, 2022: 243-254. |
36 | XING L, SHAO S, LIU W, et al. Learning task-specific discriminative embeddings for few-shot image classification[J]. Neurocomputing, 2022, 488: 1-13. |
37 | XIE J, LONG F, LV J, et al. Joint distribution matters: deep Brownian distance covariance for few-shot classification[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7962-7971. |
38 | MA R, FANG P, DRUMMOND T, et al. Adaptive poincaré point to set distance for few-shot classification[C]// Proceedings of the 2022 AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022, 36(2): 1926-1934. |
[1] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[2] | Xinyan YU, Cheng ZENG, Qian WANG, Peng HE, Xiaoyu DING. Few-shot news topic classification method based on knowledge enhancement and prompt learning [J]. Journal of Computer Applications, 2024, 44(6): 1767-1774. |
[3] | Feiyu ZHAI, Handa MA. Hybrid classical-quantum classification model based on DenseNet [J]. Journal of Computer Applications, 2024, 44(6): 1905-1910. |
[4] | Bin XIAO, Mo YANG, Min WANG, Guangyuan QIN, Huan LI. Domain generalization method of phase-frequency fusion from independent perspective [J]. Journal of Computer Applications, 2024, 44(4): 1002-1009. |
[5] | Xue LI, Guangle YAO, Honghui WANG, Jun LI, Haoran ZHOU, Shaoze YE. Remote sensing image classification based on sample incremental learning [J]. Journal of Computer Applications, 2024, 44(3): 732-736. |
[6] | Wen ZHOU, Yuzhang CHEN, Zhiyuan WEN, Shiqi WANG. Fish image classification based on positional overlapping patch embedding and multi-scale channel interactive attention [J]. Journal of Computer Applications, 2024, 44(10): 3209-3216. |
[7] | Tong CHEN, Jiwei WEI, Shiyuan HE, Jingkuan SONG, Yang YANG. Adversarial training method with adaptive attack strength [J]. Journal of Computer Applications, 2024, 44(1): 94-100. |
[8] | Bihui YU, Xingye CAI, Jingxuan WEI. Few-shot text classification method based on prompt learning [J]. Journal of Computer Applications, 2023, 43(9): 2735-2740. |
[9] | Xiaomin ZHOU, Fei TENG, Yi ZHANG. Automatic international classification of diseases coding model based on meta-network [J]. Journal of Computer Applications, 2023, 43(9): 2721-2726. |
[10] | Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network [J]. Journal of Computer Applications, 2023, 43(8): 2325-2329. |
[11] | Bin WANG, Tian XIANG, Yidong LYU, Xiaofan WANG. Adaptive multi-scale feature channel grouping optimization algorithm based on NSGA‑Ⅱ [J]. Journal of Computer Applications, 2023, 43(5): 1401-1408. |
[12] | Zhenliang LI, Bo LI. Improved method of convolution neural network based on matrix decomposition [J]. Journal of Computer Applications, 2023, 43(3): 685-691. |
[13] | Kai WEN, Xiao XUE, Juan JI. Shared transformation matrix capsule network for complex image classification [J]. Journal of Computer Applications, 2023, 43(11): 3411-3417. |
[14] | Jiaxuan WEI, Shikang DU, Zhixuan YU, Ruisheng ZHANG. Review of white-box adversarial attack technologies in image classification [J]. Journal of Computer Applications, 2022, 42(9): 2732-2741. |
[15] | Wei REN, Hexiang BAI. Multi-label image classification method based on global and local label relationship [J]. Journal of Computer Applications, 2022, 42(5): 1383-1390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||