Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (8): 2325-2329.DOI: 10.11772/j.issn.1001-9081.2022121865
• The 19th International Conference on Web Information Systems and Applications (WISA 2022) • Previous Articles Next Articles
					
						                                                                                                                                                                                                                                                                                    Junjian JIANG1, Dawei LIU1, Yifan LIU1, Yougui REN1,2, Zhibin ZHAO1( )
)
												  
						
						
						
					
				
Received:2022-12-15
															
							
																	Revised:2023-02-02
															
							
																	Accepted:2023-02-08
															
							
							
																	Online:2023-04-21
															
							
																	Published:2023-08-10
															
							
						Contact:
								Zhibin ZHAO   
													About author:JIANG Junjian, born in 1998, M. S. candidate. His research interests include machine learning, computer vision.Supported by:
        
                   
            姜钧舰1, 刘达维1, 刘逸凡1, 任酉贵1,2, 赵志滨1( )
)
                  
        
        
        
        
    
通讯作者:
					赵志滨
							作者简介:姜钧舰(1998—),男,辽宁丹东人,硕士研究生,CCF会员,主要研究方向:机器学习、计算机视觉基金资助:CLC Number:
Junjian JIANG, Dawei LIU, Yifan LIU, Yougui REN, Zhibin ZHAO. Few-shot object detection algorithm based on Siamese network[J]. Journal of Computer Applications, 2023, 43(8): 2325-2329.
姜钧舰, 刘达维, 刘逸凡, 任酉贵, 赵志滨. 基于孪生网络的小样本目标检测算法[J]. 《计算机应用》唯一官方网站, 2023, 43(8): 2325-2329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022121865
| 名称 | ResNet | ResNet-DW | 
|---|---|---|
| conv1 | 7×7Conv,N=64,stride=2 | 7×7 Conv, N=64, stride=2 | 
| conv2_x | 3×3maxpool, stride=2 | 3×3maxpool, stride=2 | 
| conv3_x | ||
| conv4_x | ||
| conv5_x | 
Tab. 1 Network structure parameters
| 名称 | ResNet | ResNet-DW | 
|---|---|---|
| conv1 | 7×7Conv,N=64,stride=2 | 7×7 Conv, N=64, stride=2 | 
| conv2_x | 3×3maxpool, stride=2 | 3×3maxpool, stride=2 | 
| conv3_x | ||
| conv4_x | ||
| conv5_x | 
| K | 算法 | mAP | AP50 | AP75 | 
|---|---|---|---|---|
| 2 | TFA | 5.4 | 15.1 | 4.6 | 
| MSPR | 6.7 | 18.0 | 6.2 | |
| DeFRCN | 10.8 | 21.9 | 8.8 | |
| SiamDet | 11.0 | 22.8 | 8.6 | |
| 5 | TFA | 7.7 | 19.3 | 6.8 | 
| MSPR | 8.7 | 20.0 | 8.0 | |
| DeFRCN | 13.7 | 27.8 | 11.1 | |
| SiamDet | 13.7 | 28.6 | 11.0 | 
Tab. 2 Experimental results on MS-COCO dataset
| K | 算法 | mAP | AP50 | AP75 | 
|---|---|---|---|---|
| 2 | TFA | 5.4 | 15.1 | 4.6 | 
| MSPR | 6.7 | 18.0 | 6.2 | |
| DeFRCN | 10.8 | 21.9 | 8.8 | |
| SiamDet | 11.0 | 22.8 | 8.6 | |
| 5 | TFA | 7.7 | 19.3 | 6.8 | 
| MSPR | 8.7 | 20.0 | 8.0 | |
| DeFRCN | 13.7 | 27.8 | 11.1 | |
| SiamDet | 13.7 | 28.6 | 11.0 | 
| K | 算法 | Novel Set 1 | Novel Set 2 | Novel Set 3 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| mAP | AP50 | AP75 | mAP | AP50 | AP75 | mAP | AP50 | AP75 | ||
| 2 | TFA | 18.5 | 36.1 | 14.2 | 12.0 | 26.9 | 8.6 | 16.1 | 34.8 | 10.5 | 
| MSPR | 19.6 | 40.5 | 15.8 | 12.5 | 30.3 | 8.9 | 16.3 | 39.5 | 11.0 | |
| DeFRCN | 21.7 | 44.6 | 18.2 | 14.8 | 32.7 | 10.3 | 17.8 | 41.1 | 13.1 | |
| SiamDet | 20.6 | 44.9 | 18.2 | 14.9 | 33.0 | 10.5 | 18.0 | 41.8 | 13.4 | |
| 5 | TFA | 22.4 | 46.3 | 16.1 | 17.6 | 38.9 | 11.8 | 20.1 | 42.6 | 14.2 | 
| MSPR | 23.7 | 50.6 | 19.8 | 18.8 | 41.5 | 12.1 | 20.5 | 44.8 | 15.6 | |
| DeFRCN | 26.8 | 54.5 | 21.4 | 20.1 | 44.6 | 14.4 | 22.4 | 47.3 | 17.1 | |
| SiamDet | 26.9 | 55.9 | 21.5 | 21.5 | 45.0 | 14.4 | 22.6 | 47.5 | 17.6 | |
Tab. 3 Experimental results on PASCAL VOC dataset
| K | 算法 | Novel Set 1 | Novel Set 2 | Novel Set 3 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| mAP | AP50 | AP75 | mAP | AP50 | AP75 | mAP | AP50 | AP75 | ||
| 2 | TFA | 18.5 | 36.1 | 14.2 | 12.0 | 26.9 | 8.6 | 16.1 | 34.8 | 10.5 | 
| MSPR | 19.6 | 40.5 | 15.8 | 12.5 | 30.3 | 8.9 | 16.3 | 39.5 | 11.0 | |
| DeFRCN | 21.7 | 44.6 | 18.2 | 14.8 | 32.7 | 10.3 | 17.8 | 41.1 | 13.1 | |
| SiamDet | 20.6 | 44.9 | 18.2 | 14.9 | 33.0 | 10.5 | 18.0 | 41.8 | 13.4 | |
| 5 | TFA | 22.4 | 46.3 | 16.1 | 17.6 | 38.9 | 11.8 | 20.1 | 42.6 | 14.2 | 
| MSPR | 23.7 | 50.6 | 19.8 | 18.8 | 41.5 | 12.1 | 20.5 | 44.8 | 15.6 | |
| DeFRCN | 26.8 | 54.5 | 21.4 | 20.1 | 44.6 | 14.4 | 22.4 | 47.3 | 17.1 | |
| SiamDet | 26.9 | 55.9 | 21.5 | 21.5 | 45.0 | 14.4 | 22.6 | 47.5 | 17.6 | |
| ResNet-DW | ResNet | GDL | Attention-RPN | mAP/% | 
|---|---|---|---|---|
| √ | 8.6 | |||
| √ | √ | 11.0 | ||
| √ | √ | 10.2 | ||
| √ | √ | √ | 12.5 | |
| √ | √ | √ | 13.7 | 
Tab. 4 Ablation experiment results
| ResNet-DW | ResNet | GDL | Attention-RPN | mAP/% | 
|---|---|---|---|---|
| √ | 8.6 | |||
| √ | √ | 11.0 | ||
| √ | √ | 10.2 | ||
| √ | √ | √ | 12.5 | |
| √ | √ | √ | 13.7 | 
| 1 | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2005: 886-893. 10.1109/cvpr.2005.4 | 
| 2 | LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 10.1023/b:visi.0000029664.99615.94 | 
| 3 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015:91-99. | 
| 4 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2022-04-13].. 10.1109/cvpr.2017.690 | 
| 5 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 10.1109/cvpr.2014.81 | 
| 6 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169 | 
| 7 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. | 
| 8 | HSIEH T I, LO Y C, CHEN H T, et al. One-shot object detection with co-attention and co-excitation[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2019: 2725-2734. | 
| 9 | KANG B Y, LIU Z, WANG X, et al. Few-shot object detection via feature reweighting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8419-8428. 10.1109/iccv.2019.00851 | 
| 10 | FAN Q, ZHUO W, TANG C K, et al. Few-shot object detection with attention-RPN and multi-relation detector[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4012-4021. 10.1109/cvpr42600.2020.00407 | 
| 11 | QIAO L M, ZHAO Y X, LI Z Y, et al. DeFRCN: decoupled Faster R-CNN for few-shot object detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8661-8670. 10.1109/iccv48922.2021.00856 | 
| 12 | CUCCHIARA R, GRANA C, PICCARDI M, et al. Improving shadow suppression in moving object detection with HSV color information[C]// Proceedings of the 2001 IEEE Intelligent Transportation Systems. Piscataway: IEEE, 2001: 334-339. | 
| 13 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 | 
| 14 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 | 
| 15 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2022-05-06].. | 
| 16 | CHEN H, WANG Y L, WANG G Y, et al. LSTD: a low-shot transfer detector for object detection[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 2836-2843. 10.1609/aaai.v32i1.11716 | 
| 17 | WANG T, ZHANG X P, YUAN L, et al. Few-shot adaptive Faster R-CNN[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7166-7175. 10.1109/cvpr.2019.00734 | 
| 18 | WANG X, HUANG T E, DARRELL T, et al. Frustratingly simple few-shot object detection[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 9919-9928. | 
| 19 | ZHANG G J, CUI K W, WU R L, et al. PNPDet: efficient few-shot detection without forgetting via plug-and-play sub-networks[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3822-3831. 10.1109/wacv48630.2021.00387 | 
| 20 | ZHANG T F, ZHANG Y, SUN X, et al. Comparison network for one-shot conditional object detection[EB/OL]. [2022-02-28].. 10.1016/j.neucom.2020.04.092 | 
| 21 | PÉREZ-RÚA J M, ZHU X T, HOSPEDALES T M, et al. Incremental few-shot object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13843-13852. 10.1109/cvpr42600.2020.01386 | 
| 22 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2022-08-04].. 10.48550/arXiv.1704.04861 | 
| 23 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 | 
| 24 | GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2011: 315-323. | 
| 25 | HADSELL R, CHOPRA S, LeCUN Y. Dimensionality reduction by learning an invariant mapping[C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2006: 1735-1742. 10.1109/cvpr.2006.9 | 
| 26 | SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 815-823. 10.1109/cvpr.2015.7298682 | 
| 27 | WU J X, LIU S T, HUANG D, et al. Multi-scale positive sample refinement for few-shot object detection[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12361. Cham: Springer, 2020: 456-472. | 
| [1] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. | 
| [2] | Yeheng LI, Guangsheng LUO, Qianmin SU. Logo detection algorithm based on improved YOLOv5 [J]. Journal of Computer Applications, 2024, 44(8): 2580-2587. | 
| [3] | Yingjun ZHANG, Niuniu LI, Binhong XIE, Rui ZHANG, Wangdong LU. Semi-supervised object detection framework guided by curriculum learning [J]. Journal of Computer Applications, 2024, 44(8): 2326-2333. | 
| [4] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. | 
| [5] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. | 
| [6] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. | 
| [7] | Yue LIU, Fang LIU, Aoyun WU, Qiuyue CHAI, Tianxiao WANG. 3D object detection network based on self-attention mechanism and graph convolution [J]. Journal of Computer Applications, 2024, 44(6): 1972-1977. | 
| [8] | Yaping DENG, Yingjiang LI. Review of YOLO algorithm and its applications to object detection in autonomous driving scenes [J]. Journal of Computer Applications, 2024, 44(6): 1949-1958. | 
| [9] | Xinyan YU, Cheng ZENG, Qian WANG, Peng HE, Xiaoyu DING. Few-shot news topic classification method based on knowledge enhancement and prompt learning [J]. Journal of Computer Applications, 2024, 44(6): 1767-1774. | 
| [10] | Hongtian LI, Xinhao SHI, Weiguo PAN, Cheng XU, Bingxin XU, Jiazheng YUAN. Few-shot object detection via fusing multi-scale and attention mechanism [J]. Journal of Computer Applications, 2024, 44(5): 1437-1444. | 
| [11] | Huantong GENG, Zhenyu LIU, Jun JIANG, Zichen FAN, Jiaxing LI. Embedded road crack detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2024, 44(5): 1613-1618. | 
| [12] | Xiaogang SONG, Dongdong ZHANG, Pengfei ZHANG, Li LIANG, Xinhong HEI. Real-time object detection algorithm for complex construction environments [J]. Journal of Computer Applications, 2024, 44(5): 1605-1612. | 
| [13] | Ziwen SUN, Lizhi QIAN, Chuandong YANG, Yibo GAO, Qingyang LU, Guanglin YUAN. Survey of visual object tracking methods based on Transformer [J]. Journal of Computer Applications, 2024, 44(5): 1644-1654. | 
| [14] | Wei WANG, Chunhui ZHAO, Xinyao TANG, Liugang XI. 3D vehicle detection with adaptive horizon line constraints [J]. Journal of Computer Applications, 2024, 44(3): 909-915. | 
| [15] | Xinye LI, Yening HOU, Yinghui KONG, Zhiqi YAN. Few-shot object detection combining feature fusion and enhanced attention [J]. Journal of Computer Applications, 2024, 44(3): 745-751. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||