Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (1): 144-152.DOI: 10.11772/j.issn.1001-9081.2024010090
• Cyber security • Previous Articles Next Articles
Zhibin ZUO1,2, Kai YANG1,2, Miaolei DENG1,2(), Demin WANG1,2, Mimi MA1,2
Received:
2024-01-25
Revised:
2024-04-06
Accepted:
2024-04-07
Online:
2024-05-09
Published:
2025-01-10
Contact:
Miaolei DENG
About author:
ZUO Zhibin,born in 1979, Ph. D., lecturer. His research interests include software defined network, network security.Supported by:
左志斌1,2, 杨凯1,2, 邓淼磊1,2(), 王德民1,2, 马米米1,2
通讯作者:
邓淼磊
作者简介:
左志斌(1979—),男,河南郑州人,讲师,博士,CCF会员,主要研究方向:软件定义网络、网络安全;基金资助:
CLC Number:
Zhibin ZUO, Kai YANG, Miaolei DENG, Demin WANG, Mimi MA. Dynamic network defense scheme based on programmable software defined networks[J]. Journal of Computer Applications, 2025, 45(1): 144-152.
左志斌, 杨凯, 邓淼磊, 王德民, 马米米. 基于可编程软件定义网络的动态网络防御方案[J]. 《计算机应用》唯一官方网站, 2025, 45(1): 144-152.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024010090
防御方案 | 嗅探的端信息 |
---|---|
无IP端信息跳变 | (10.0.0.1,10.0.0.8,42980,5001,6) (10.0.0.8,10.0.0.1,5001,42980,6) |
DAH方案 | (10.0.0.62,10.0.0.74,42980,5001,6) (10.0.0.74,10.0.0.62,5001,42980,6) |
双虚假IP地址跳变方案 | (10.0.0.224,10.0.0.140,42980,5001,6) (10.0.0.126,10.0.0.334,5001,42980,6) |
动态网络防御方案 | (10.0.0.15,10.0.26,1045,2036,17) (10.0.0.26,10.0.0.15,2036,1045,17) |
Tab. 1 End information captured by WireShark on OpenFlow devices
防御方案 | 嗅探的端信息 |
---|---|
无IP端信息跳变 | (10.0.0.1,10.0.0.8,42980,5001,6) (10.0.0.8,10.0.0.1,5001,42980,6) |
DAH方案 | (10.0.0.62,10.0.0.74,42980,5001,6) (10.0.0.74,10.0.0.62,5001,42980,6) |
双虚假IP地址跳变方案 | (10.0.0.224,10.0.0.140,42980,5001,6) (10.0.0.126,10.0.0.334,5001,42980,6) |
动态网络防御方案 | (10.0.0.15,10.0.26,1045,2036,17) (10.0.0.26,10.0.0.15,2036,1045,17) |
防御方案 | 特点 |
---|---|
无IP端信息跳变 | 不会带来额外的控制和处理开销,数据转发时延低。网络中的通信数据真实,容易被攻击者利用分析 |
DAH方案 | 对IP地址进行跳变,源IP地址和目的IP地址以虚假的方式呈现,从而对攻击者进行欺骗。该方案只是针对IP地址进行跳变,跳变的地址范围和数据包的混淆程度有限 |
双虚假IP地址跳变方案 | 在DAH方案上做了进一步的改进。每个终端设备都拥有两个虚假IP地址,一个作为发送方使用,另外一个作为接收方使用,从而进一步提高了链路中数据包的混淆程度。该方案中数据包的端口信息和协议信息都是真实的,容易被攻击者利用分析,从而对网络的安全造成影响 |
动态网络防御方案 | 将IP地址、端口号、协议号一同跳变,实现多维协同跳变,扩大了跳变的地址范围,增加了跳变的复杂性和不可预测性,使攻击者难以获取网络中真实通信数据,进一步提高了网络的安全性 |
Tab. 2 Comparison of different defense schemes
防御方案 | 特点 |
---|---|
无IP端信息跳变 | 不会带来额外的控制和处理开销,数据转发时延低。网络中的通信数据真实,容易被攻击者利用分析 |
DAH方案 | 对IP地址进行跳变,源IP地址和目的IP地址以虚假的方式呈现,从而对攻击者进行欺骗。该方案只是针对IP地址进行跳变,跳变的地址范围和数据包的混淆程度有限 |
双虚假IP地址跳变方案 | 在DAH方案上做了进一步的改进。每个终端设备都拥有两个虚假IP地址,一个作为发送方使用,另外一个作为接收方使用,从而进一步提高了链路中数据包的混淆程度。该方案中数据包的端口信息和协议信息都是真实的,容易被攻击者利用分析,从而对网络的安全造成影响 |
动态网络防御方案 | 将IP地址、端口号、协议号一同跳变,实现多维协同跳变,扩大了跳变的地址范围,增加了跳变的复杂性和不可预测性,使攻击者难以获取网络中真实通信数据,进一步提高了网络的安全性 |
1 | ZHONG A, LI Z, WU D, et al. Stochastic peak age of information guarantee for cooperative sensing in internet of everything [J]. IEEE Internet of Things Journal, 2023, 10 (17): 15186-15196. |
2 | 张子扬, 赵军辉, 马小婷. 面向5G蜂窝物联网的大规模设备接入算法 [J]. 应用科学学报, 2023, 41 (4): 626-635. |
ZHANG Z Y, ZHAO J H, MA X T. Large-scale device access algorithm for 5G cellular internet of things [J]. Journal of Applied Sciences, 2023, 41 (4): 626-635. | |
3 | KOVVALI R S K, SUNDARAM G. CETS: enabling sustainable IoT with cooperative energy transfer schedule towards 6G era [J]. Sensors, 2022, 22 (17): No.6584. |
4 | 朱元. 网络空间安全是国家安全的坚强屏障 [J]. 信息安全研究, 2020, 6 (11): 1055-1056. |
ZHU Y. The cyber security is the strong barrier of the national security [J]. Journal of Information Security Research, 2020, 6 (11): 1055-1056. | |
5 | PAGNOTTA G, DE GASPARI FA, HITAJI D, et al. DOLOS: a novel architecture for moving target defense [J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5890-5905. |
6 | SENGUPTA S, CHOWDHARY A, SABUR A, et al. A survey of moving target defenses for network security [J]. IEEE Communications Surveys and Tutorials, 2020, 22 (3): 1909-1941. |
7 | JALOWSKI Ł, ZMUDA M, RAWSKI M. A survey on moving target defense for networks: a practical view [J]. Electronics, 2022, 11 (18): No.2886. |
8 | NAVAS R E, CUPPENS F, CUPPENS N B, et al. MTD, where art thou? a systematic review of moving target defense techniques for IoT [J]. IEEE Internet of Things Journal, 2021, 8 (10): 7818-7832. |
9 | YUREKTEN O, DEMIRCI M. SDN-based cyber defense: a survey [J]. Future Generation Computer Systems, 2021, 115: 126-149. |
10 | DEB R, ROY S. A comprehensive survey of vulnerability and information security in SDN [J]. Computer Networks, 2022, 206: No.108802. |
11 | MALEH Y, QASMAOUI Y, El GHOLAMI K, et al. A comprehensive survey on SDN security: threats, mitigations, and future directions [J]. Journal of Reliable Intelligent Environments, 2023, 9: 201-239. |
12 | AHMAD S, MIR A H. Scalability, consistency, reliability and security in SDN controllers: a survey of diverse SDN controllers [J]. Journal of Network and Systems Management, 2021, 29: No.9. |
13 | BOSSHART P, DALY D, GIBB G, et al. P4: programming protocol-independent packet processors [J]. ACM SIGCOMM Computer Communication Review, 2014, 44 (3): 87-95. |
14 | LIATIFIS A, SARIGIANNIDIS P, ARGYRIOU V, et al. Advancing SDN from OpenFlow to P4: a survey [J]. ACM Computing Surveys, 2023, 55 (9): No.186. |
15 | SHARMA D P, KIM D S, YOON S, et al. FRVM: flexible random virtual IP multiplexing in software-defined networks [C]// Proceedings of the 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/ 12th IEEE International Conference on Big Data Science and Engineering. Piscataway: IEEE, 2018: 579-587. |
16 | GUDLA C, SUNG A H. Moving target defense discrete host address mutation and analysis in SDN [C]// Proceedings of the 2020 International Conference on Computational Science and Computational Intelligence. Piscataway: IEEE, 2020: 55-61. |
17 | WANG P, ZHOU M, DING Z. A two-layer IP hopping-based moving target defense approach to enhancing the security of mobile ad-hoc networks [J]. Sensors, 2021, 21 (7): No.2355. |
18 | 李朝阳, 谭晶磊, 胡瑞钦, 等. 基于双重地址跳变的移动目标防御方法 [J]. 信息网络安全, 2021, 21 (2): 24-33. |
LI Z Y, TAN J L, HU R Q, et al. Moving target defense method based on double address hopping [J]. Netinfo Security, 2021, 21 (2): 24-33. | |
19 | 胡瑞钦, 谭晶磊, 彭心荷, 等. 面向SDN数据层的双虚假IP地址动态跳变技术 [J]. 信息网络安全, 2022, 22 (2): 76-85. |
HU R Q, TAN J L, PENG X H, et al. Dynamic hopping technology of double virtual IP address for SDN data layer [J]. Netinfo Security, 2022, 22 (2): 76-85. | |
20 | BANDI N, TAJBAKHSH H, ANALOUI M. FastMove: fast IP switching moving target defense to mitigate DDOS attacks [C]// Proceedings of the 2021 IEEE Conference on Dependable and Secure Computing. Piscataway: IEEE, 2021: 1-7. |
21 | ZHOU Y, CHENG G, YU S. An SDN-enabled proactive defense framework for DDoS mitigation in IoT networks [J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 5366-5380. |
22 | HE G, SI Y, XIAO X, et al. Preventing IoT DDoS attacks using blockchain and IP address obfuscation [C]// Proceedings of the 13th International Conference on Wireless Communications and Signal Processing. Piscataway: IEEE, 2021: 1-5. |
23 | WANG Y C, WANG Y C. Efficient and low-cost defense against distributed denial-of-service attacks in SDN-based networks [J]. International Journal of Communication Systems, 2020, 33 (14): No.e4461. |
24 | DANG F F, WU K, LI S, et al. Dynamic moving target defense strategy based on adaptive port hopping in SDN [C]// Proceedings of the 2023 International Conference on Computer Network Security and Software Engineering Bellingham. WA: SPIE, 2023: No.127141V. |
25 | XU X, HU H, LIU Y, et al. Moving target defense of routing randomization with deep reinforcement learning against eavesdropping attack [J]. Digital Communications and Networks, 2022, 8 (3): 373-387. |
26 | ZHANG T, XU C, SHEN J, et al. How to disturb network reconnaissance: a moving target defense approach based on deep reinforcement learning [J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 5735-5748. |
27 | YOON S, CHO J H, KIM D S, et al. DESOLATER: deep reinforcement learning-based resource allocation and moving target defense deployment framework [J]. IEEE Access, 2021, 9: 70700-70714. |
28 | YUNGAICELA-NAULA N M, VARGAS-ROSALES C, PÉREZ-DÍAZ J A. SDN/NFV-based framework for autonomous defense against slow-rate DDoS attacks by using reinforcement learning [J]. Future Generations Computer Systems, 2023, 149: 637-649. |
29 | DE MAESSCHALCK S, COLLE D, LIEVENS I, et al. Pan-European optical transport: networks: an availability based comparison [J]. Photonic Network Communications, 2003, 5 (3): 203-225. |
[1] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[2] | Ziqian CHEN, Kedi NIU, Zhongyuan YAO, Xueming SI. Review of blockchain lightweight technology applied to internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3688-3698. |
[3] | Kedi NIU, Min LI, Zhongyuan YAO, Xueming SI. Review of blockchain consensus algorithms for internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3678-3687. |
[4] | Yicheng WAN, Guangxiang YANG, Qingda ZHANG, Chenyang GAN, Lin YI. Impact of non-persistent carrier sense multiple access mechanism on scalability of LoRa networks [J]. Journal of Computer Applications, 2023, 43(9): 2885-2896. |
[5] | Chenyang GE, Qinrang LIU, Xue PEI, Shuai WEI, Zhengbin ZHU. Efficient collaborative defense scheme against distributed denial of service attacks in software defined network [J]. Journal of Computer Applications, 2023, 43(8): 2477-2485. |
[6] | Wenting BI, Haitao LIN, Liqun ZHANG. Moving target defense decision-making algorithm based on multi-stage evolutionary signal game model [J]. Journal of Computer Applications, 2022, 42(9): 2780-2787. |
[7] | Xu WANG, Yumin SHEN, Xiaoyun XIONG, Peng LI, Jinlong WANG. Data management method for building internet of things based on Hashgraph [J]. Journal of Computer Applications, 2022, 42(8): 2471-2480. |
[8] | Hongqiu LUO, Shengbo HU. Data naming mechanism of low earth orbit satellite mega-constellation for internet of things [J]. Journal of Computer Applications, 2022, 42(7): 2146-2154. |
[9] | Jie ZHANG, Shanshan XU, Lingyun YUAN. Internet of things access control model based on blockchain and edge computing [J]. Journal of Computer Applications, 2022, 42(7): 2104-2111. |
[10] | Ning DONG, Xiaorong CHENG, Mingquan ZHANG. Intrusion detection system with dynamic weight loss function based on internet of things platform [J]. Journal of Computer Applications, 2022, 42(7): 2118-2124. |
[11] | Xiangju LIU, Xiaobao LU, Xianjin FANG, Linsong SHANG. Low-rate denial-of-service attack detection method under software defined network environment [J]. Journal of Computer Applications, 2022, 42(4): 1301-1307. |
[12] | Xin ZHENG, Suyue LI, Anhong WANG, Meiling LI, Sami MUHAIDAT, Aiping NING. Ergodic rate analysis of cooperative multiple input multiple output ambient backscatter communication system [J]. Journal of Computer Applications, 2022, 42(3): 974-979. |
[13] | Rongrong DAI, Honghui LI, Xueliang FU. Data center flow scheduling mechanism based on differential evolution and ant colony optimization algorithm [J]. Journal of Computer Applications, 2022, 42(12): 3863-3869. |
[14] | Hexiong CHEN, Yuwei LUO, Yunkai WEI, Wei GUO, Feilu HANG, Zhengxiong MAO, Zhenhong ZHANG, Yingjun HE, Zhenyu LUO, Linjiang XIE, Ning YANG. Blockchain-based data frame security verification mechanism in software defined network [J]. Journal of Computer Applications, 2022, 42(10): 3074-3083. |
[15] | XU Hongliang, YANG Guiqin, JIANG Zhanjun. Data center adaptive multi-path load balancing algorithm based on software defined network [J]. Journal of Computer Applications, 2021, 41(4): 1160-1164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||