Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (3): 972-977.DOI: 10.11772/j.issn.1001-9081.2024030369
• Multimedia computing and computer simulation • Previous Articles Next Articles
Benjie SHE1, Shuzhi SU1, Yanmin ZHU2(), Jian HUA1, Chao WANG1
Received:
2024-04-02
Revised:
2024-06-04
Accepted:
2024-06-11
Online:
2024-07-24
Published:
2025-03-10
Contact:
Yanmin ZHU
About author:
SHE Benjie, born in 1999, M. S. candidate. His research interests include pose estimation, behavior recognition.Supported by:
通讯作者:
朱彦敏
作者简介:
佘本杰(1999—),男,安徽滁州人,硕士研究生,主要研究方向:姿态估计、行为识别基金资助:
CLC Number:
Benjie SHE, Shuzhi SU, Yanmin ZHU, Jian HUA, Chao WANG. Lightweight pose estimation network based on non-globally dependent integral regression[J]. Journal of Computer Applications, 2025, 45(3): 972-977.
佘本杰, 苏树智, 朱彦敏, 华健, 王超. 基于非全局依赖积分回归的轻量姿态估计网络[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 972-977.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024030369
方法 | 输入尺寸 | 参数量/106 | 计算量/GFLOPs | mAP/% | |||||
---|---|---|---|---|---|---|---|---|---|
IPR[ | 256×256 | 45.0 | 11.0 | 67.2 | — | — | — | — | — |
CPN[ | 256×192 | 27.0 | 6.2 | 69.4 | — | — | — | — | — |
Hourglass[ | 256×192 | 25.1 | 14.3 | 66.9 | — | — | — | — | — |
Simple Baseline[ | 256×192 | 34.0 | 8.9 | 70.4 | 88.6 | 78.3 | 67.1 | 77.2 | 76.3 |
HRNet[ | 256×192 | 28.5 | 7.1 | 73.4 | 89.5 | 80.7 | 70.2 | 80.1 | 78.9 |
Lite-HRNet[ | 256×192 | 1.1 | 0.2 | 64.8 | 86.7 | 73.0 | 62.1 | 70.5 | 71.2 |
Lite-NIRNet | 256×192 | 7.7 | 2.6 | 72.8 | 89.5 | 80.0 | 69.5 | 79.5 | 78.0 |
Tab. 1 Comparison of experimental results of different methods on COCO validation set
方法 | 输入尺寸 | 参数量/106 | 计算量/GFLOPs | mAP/% | |||||
---|---|---|---|---|---|---|---|---|---|
IPR[ | 256×256 | 45.0 | 11.0 | 67.2 | — | — | — | — | — |
CPN[ | 256×192 | 27.0 | 6.2 | 69.4 | — | — | — | — | — |
Hourglass[ | 256×192 | 25.1 | 14.3 | 66.9 | — | — | — | — | — |
Simple Baseline[ | 256×192 | 34.0 | 8.9 | 70.4 | 88.6 | 78.3 | 67.1 | 77.2 | 76.3 |
HRNet[ | 256×192 | 28.5 | 7.1 | 73.4 | 89.5 | 80.7 | 70.2 | 80.1 | 78.9 |
Lite-HRNet[ | 256×192 | 1.1 | 0.2 | 64.8 | 86.7 | 73.0 | 62.1 | 70.5 | 71.2 |
Lite-NIRNet | 256×192 | 7.7 | 2.6 | 72.8 | 89.5 | 80.0 | 69.5 | 79.5 | 78.0 |
方法 | 输入尺寸 | 参数量/106 | 计算量/GFLOPs | PCKh@0.5/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
头部 | 肘部 | 肩部 | 腕部 | 臀部 | 膝盖 | 踝关节 | 平均 | ||||
Hourglass[ | 256×256 | 25.1 | 19.10 | 96.5 | 88.4 | 95.3 | 82.5 | 87.1 | 83.5 | 78.3 | 87.5 |
Simple Baseline[ | 256×256 | 68.6 | 20.90 | 96.7 | 88.6 | 95.4 | 82.9 | 87.5 | 83.8 | 79.0 | 87.9 |
HRNet[ | 256×256 | 28.5 | 9.50 | 96.8 | 89.5 | 95.1 | 85.1 | 88.2 | 85.2 | 82.0 | 89.3 |
Lite-HRNet[ | 256×256 | 1.8 | 0.42 | — | — | — | — | — | — | — | 87.0 |
FastNet[ | 256×256 | 19.7 | 7.70 | — | — | — | — | — | — | — | 90.2 |
Lite-NIRNet | 256×256 | 7.7 | 3.40 | 96.9 | 90.4 | 95.8 | 85.1 | 89.0 | 85.7 | 81.3 | 89.7 |
Tab. 2 Comparison of experimental results of different methods on MPII validation set
方法 | 输入尺寸 | 参数量/106 | 计算量/GFLOPs | PCKh@0.5/% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
头部 | 肘部 | 肩部 | 腕部 | 臀部 | 膝盖 | 踝关节 | 平均 | ||||
Hourglass[ | 256×256 | 25.1 | 19.10 | 96.5 | 88.4 | 95.3 | 82.5 | 87.1 | 83.5 | 78.3 | 87.5 |
Simple Baseline[ | 256×256 | 68.6 | 20.90 | 96.7 | 88.6 | 95.4 | 82.9 | 87.5 | 83.8 | 79.0 | 87.9 |
HRNet[ | 256×256 | 28.5 | 9.50 | 96.8 | 89.5 | 95.1 | 85.1 | 88.2 | 85.2 | 82.0 | 89.3 |
Lite-HRNet[ | 256×256 | 1.8 | 0.42 | — | — | — | — | — | — | — | 87.0 |
FastNet[ | 256×256 | 19.7 | 7.70 | — | — | — | — | — | — | — | 90.2 |
Lite-NIRNet | 256×256 | 7.7 | 3.40 | 96.9 | 90.4 | 95.8 | 85.1 | 89.0 | 85.7 | 81.3 | 89.7 |
模型 | SCD | PConv | CA | NIR | 参数量/ 106 | 计算量/GFLOPs | mAP/% |
---|---|---|---|---|---|---|---|
模型1 | × | × | × | × | 28.5 | 7.1 | 71.4 |
模型2 | √ | × | × | × | 28.5 | 7.1 | 73.4 |
模型3 | √ | √ | × | × | 7.6 | 2.6 | 71.3 |
模型4 | √ | √ | √ | × | 7.7 | 2.6 | 72.1 |
模型5 | × | √ | √ | √ | 7.7 | 2.6 | 72.8 |
模型6 | × | × | × | √ | 28.5 | 7.1 | 74.2 |
Tab. 3 Ablation results comparison of Lite-NIRNet modules
模型 | SCD | PConv | CA | NIR | 参数量/ 106 | 计算量/GFLOPs | mAP/% |
---|---|---|---|---|---|---|---|
模型1 | × | × | × | × | 28.5 | 7.1 | 71.4 |
模型2 | √ | × | × | × | 28.5 | 7.1 | 73.4 |
模型3 | √ | √ | × | × | 7.6 | 2.6 | 71.3 |
模型4 | √ | √ | √ | × | 7.7 | 2.6 | 72.1 |
模型5 | × | √ | √ | √ | 7.7 | 2.6 | 72.8 |
模型6 | × | × | × | √ | 28.5 | 7.1 | 74.2 |
β | mAP/% | β | mAP/% |
---|---|---|---|
1 | 72.2 | 7 | 72.4 |
3 | 72.7 | 9 | 71.9 |
5 | 72.8 |
Tab. 4 Influence of different β coefficient on network accuracy
β | mAP/% | β | mAP/% |
---|---|---|---|
1 | 72.2 | 7 | 72.4 |
3 | 72.7 | 9 | 71.9 |
5 | 72.8 |
1 | GU K, YANG L, MI M B, et al. Bias-compensated integral regression for human pose estimation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10687-10702. |
2 | ZHENG C, WU W, CHEN C, et al. Deep learning-based human pose estimation: a survey [J]. ACM Computing Surveys, 2024, 56(1): No.11. |
3 | 李坤,侯庆. 基于注意力机制的轻量型人体姿态估计[J]. 计算机应用, 2022, 42(8): 2407-2414. |
LI K, HOU Q. Lightweight human pose estimation based on attention mechanism [J]. Journal of Computer Applications, 2022, 42(8): 2407-2414. | |
4 | TOSHEV A, SZEGEDY C. DeepPose: human pose estimation via deep neural networks [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:1653-1660. |
5 | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696. |
6 | WANG Y, LI M, CAI H, et al. Lite Pose: efficient architecture design for 2D human pose estimation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022:13126-13136. |
7 | YU C, XIAO B, GAO C, et al. Lite-HRNet: a lightweight high-resolution network [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10435-10445. |
8 | SUN X, XIAO B, WEI F, et al. Integral human pose regression[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11210. Cham: Springer, 2018:536-553. |
9 | GU K, YANG L, YAO A. Dive deeper into integral pose regression[EB/OL]. [2024-01-23]. . |
10 | GU K, YANG L, YAO A. Removing the bias of integral pose regression [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11047-11056. |
11 | CHEN J, KAO S H, HE H, et al. Run, don’t walk: chasing higher flops for faster neural networks [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023:12021-12031. |
12 | 轩勃娜,李进,宋亚飞,等. 基于改进MobileNetV2的恶意代码分类方法[J]. 计算机应用, 2023, 43(7):2217-2225. |
XUAN B N, LI J, SONG Y F, et al. Malicious code classification method based on improved MobileNetV2 [J]. Journal of Computer Applications, 2023, 43(7): 2217-2225. | |
13 | 张宸嘉,朱磊,俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用, 2021, 57(20):64-72. |
ZHANG C J, ZHU L, YU L. Review of attention mechanism in convolutional neural networks [J]. Computer Engineering and Applications, 2021, 57(20): 64-72. | |
14 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. |
15 | ZHANG F, ZHU X, DAI H, et al. Distribution-aware coordinate representation for human pose estimation [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7091-7100. |
16 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755. |
17 | ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014:3686-3693. |
18 | 杨观赐,杨静,李少波,等. 基于Dropout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报(自然科学版), 2018, 46(7):122-127. |
YANG G C, YANG J, LI S B, et al. Modified CNN algorithm based on Dropout and ADAM optimizer [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(7):122-127. | |
19 | CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:7103-7112. |
20 | NEWILL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9912. Cham: Springer, 2016:483-499. |
21 | XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11210. Cham: Springer, 2018: 472-487. |
22 | LUO Y, OU Z, WAN T, et al. FastNet: fast high-resolution network for human pose estimation [J]. Image and Vision Computing, 2022, 119: No.104390. |
[1] | Jiayang GUI, Shunji WANG, Zhengkang ZHOU, Jiashan TANG. Tunnel foreign object detection algorithm based on improved YOLOv8n [J]. Journal of Computer Applications, 2025, 45(2): 655-661. |
[2] | Junying CHEN, Shijie GUO, Lingling CHEN. Lightweight human pose estimation based on decoupled attention and ghost convolution [J]. Journal of Computer Applications, 2025, 45(1): 223-233. |
[3] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[4] | Yaxing BING, Yangping WANG, Jiu YONG, Haomou BAI. Six degrees of freedom object pose estimation algorithm based on filter learning network [J]. Journal of Computer Applications, 2024, 44(6): 1920-1926. |
[5] | Yi WANG, Jie XIE, Jia CHENG, Liwei DOU. Review of object pose estimation in RGB images based on deep learning [J]. Journal of Computer Applications, 2023, 43(8): 2546-2555. |
[6] | Bona XUAN, Jin LI, Yafei SONG, Zexuan MA. Malicious code classification method based on improved MobileNetV2 [J]. Journal of Computer Applications, 2023, 43(7): 2217-2225. |
[7] | Guangyao ZHANG, Chunfeng SONG. Pedestrian head tracking model based on full-body appearance features [J]. Journal of Computer Applications, 2023, 43(5): 1372-1377. |
[8] | Wenju LI, Gan ZHANG, Liu CUI, Wanghui CHU. Lightweight traffic sign recognition model based on coordinate attention [J]. Journal of Computer Applications, 2023, 43(2): 608-614. |
[9] | Wei ZHAO, Yi LI. Kinect-based human pose estimation optimization and animation generation [J]. Journal of Computer Applications, 2022, 42(9): 2830-2837. |
[10] | Kun LI, Qing HOU. Lightweight human pose estimation based on attention mechanism [J]. Journal of Computer Applications, 2022, 42(8): 2407-2414. |
[11] | Feiyu YANG, Zhan SONG, Zhenzhong XIAO, Yaoyang MO, Yu CHEN, Zhe PAN, Min ZHANG, Yao ZHANG, Beibei QIAN, Chaowei TANG, Wu JIN. Rethinking errors in human pose estimation heatmap [J]. Journal of Computer Applications, 2022, 42(8): 2548-2555. |
[12] | Qixiang SUN, Ning HE, Jingzun ZHANG, Chen HONG. Lightweight human pose estimation method based on non-local high-resolution network [J]. Journal of Computer Applications, 2022, 42(5): 1398-1406. |
[13] | Dejian WEI, Wenming WANG, Quanyu WANG, Haopan REN, Yanyan GAO, Zhi WANG. Improved 3D hand pose estimation network based on anchor [J]. Journal of Computer Applications, 2022, 42(3): 953-959. |
[14] | Kangzhe MA, Jiatian PI, Zhoubing XIONG, Jia LYU. 6D pose estimation incorporating attentional features for occluded objects [J]. Journal of Computer Applications, 2022, 42(12): 3715-3722. |
[15] | Jingqi MA, Huan LEI, Minyi CHEN. Fall behavior detection algorithm for the elderly based on AlphaPose optimization model [J]. Journal of Computer Applications, 2022, 42(1): 294-301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||