Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 294-301.DOI: 10.11772/j.issn.1001-9081.2021020331
• Frontier and comprehensive applications • Previous Articles Next Articles
Jingqi MA1, Huan LEI1, Minyi CHEN2()
Received:
2021-03-05
Revised:
2021-05-17
Accepted:
2021-05-18
Online:
2021-06-11
Published:
2022-01-10
Contact:
Minyi CHEN
About author:
MA Jingqi, born in 1988, M. S., engineer. His research interests include behavior analysis, deep learning.Supported by:
通讯作者:
陈敏翼
作者简介:
马敬奇(1988—),男,河南安阳人,工程师,硕士,主要研究方向:行为分析、深度学习基金资助:
CLC Number:
Jingqi MA, Huan LEI, Minyi CHEN. Fall behavior detection algorithm for the elderly based on AlphaPose optimization model[J]. Journal of Computer Applications, 2022, 42(1): 294-301.
马敬奇, 雷欢, 陈敏翼. 基于AlphaPose优化模型的老人跌倒行为检测算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 294-301.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021020331
模型 | AP@0.5:0.95 | AP@0.5 | AP@0.75 |
---|---|---|---|
OpenPose | 61.8 | 84.9 | 67.5 |
Detectron | 67.0 | 88.0 | 73.1 |
AlphaPose | 73.3 | 89.2 | 79.1 |
Tab. 1 Performance comparison of mainstream human pose detection models
模型 | AP@0.5:0.95 | AP@0.5 | AP@0.75 |
---|---|---|---|
OpenPose | 61.8 | 84.9 | 67.5 |
Detectron | 67.0 | 88.0 | 73.1 |
AlphaPose | 73.3 | 89.2 | 79.1 |
目标检测模型 | 帧率/ (frame·s-1) | 平均 准确率/% | 图像 分辨率 |
---|---|---|---|
YOLOv4-tiny-416 | 10.70 | 84.6 | 320×240 |
YOLOv4-tiny-trt-416(本文) | 30.30 | 84.6 | 320×240 |
NanoDet-m | 8.33 | 56.3 | 320×240 |
YOLOv5s | 5.78 | 83.4 | 320×240 |
YOLOv3-spp-416 | 4.15 | 86.7 | 320×240 |
Tab. 2 Performance comparison of target detection models
目标检测模型 | 帧率/ (frame·s-1) | 平均 准确率/% | 图像 分辨率 |
---|---|---|---|
YOLOv4-tiny-416 | 10.70 | 84.6 | 320×240 |
YOLOv4-tiny-trt-416(本文) | 30.30 | 84.6 | 320×240 |
NanoDet-m | 8.33 | 56.3 | 320×240 |
YOLOv5s | 5.78 | 83.4 | 320×240 |
YOLOv3-spp-416 | 4.15 | 86.7 | 320×240 |
姿态估计模型 | 帧率/(frame·s-1) | 平均准确率/% | 图像分辨率 |
---|---|---|---|
Pose | 7.35 | 71.2 | 320×240 |
OpenPose | 3.48 | 60.5 | 320×240 |
trt_pose | 6.93 | 55.1 | 224×224 |
Pose-trt(本文) | 12.50 | 71.2 | 320×240 |
Tab. 3 Performance comparison of pose detection models
姿态估计模型 | 帧率/(frame·s-1) | 平均准确率/% | 图像分辨率 |
---|---|---|---|
Pose | 7.35 | 71.2 | 320×240 |
OpenPose | 3.48 | 60.5 | 320×240 |
trt_pose | 6.93 | 55.1 | 224×224 |
Pose-trt(本文) | 12.50 | 71.2 | 320×240 |
算法 | 漏检数 | 误检数 | 瞬时跌倒特征次数 | 跌倒状态特征次数 | 准确率 | 帧率/(frame·s-1) | 视频分辨率 |
---|---|---|---|---|---|---|---|
YOLOv3-spp-416+Pose | 16 | 9 | 6 | 78 | 0.759 | 3.05 | 320×240 |
YOLOv4-tiny-416+Pose | 8 | 3 | 7 | 93 | 0.894 | 4.38 | 320×240 |
YOLOv5s+Pose | 7 | 3 | 11 | 94 | 0.903 | 2.73 | 320×240 |
trt_pose | 17 | 10 | 3 | 77 | 0.634 | 4.31 | 320×240 |
NanoDet-m+Pose | 13 | 11 | 8 | 78 | 0.769 | 2.52 | 320×240 |
本文算法 | 6 | 3 | 12 | 95 | 0.913 | 8.83 | 320×240 |
Tab. 4 Algorithm performance quantitative analysis by using fall test videos
算法 | 漏检数 | 误检数 | 瞬时跌倒特征次数 | 跌倒状态特征次数 | 准确率 | 帧率/(frame·s-1) | 视频分辨率 |
---|---|---|---|---|---|---|---|
YOLOv3-spp-416+Pose | 16 | 9 | 6 | 78 | 0.759 | 3.05 | 320×240 |
YOLOv4-tiny-416+Pose | 8 | 3 | 7 | 93 | 0.894 | 4.38 | 320×240 |
YOLOv5s+Pose | 7 | 3 | 11 | 94 | 0.903 | 2.73 | 320×240 |
trt_pose | 17 | 10 | 3 | 77 | 0.634 | 4.31 | 320×240 |
NanoDet-m+Pose | 13 | 11 | 8 | 78 | 0.769 | 2.52 | 320×240 |
本文算法 | 6 | 3 | 12 | 95 | 0.913 | 8.83 | 320×240 |
1 | 黄明安,陈钰. 中国人口老龄化的现状及建设[J]. 经济研究导刊, 2018(10):60-64, 72. 10.2196/preprints.27345 |
HUANG M A, CHEN Y. The status quo and advice of China’s ageing[J]. Economic Research Guide, 2018(10):60-64, 72. 10.2196/preprints.27345 | |
2 | 陈瑜,姜小鹰,杨美丽,等. 养老机构老年人跌倒效能状况及其影响因素分析[J]. 中国实用护理, 2016, 32(6):412-415. 10.3760/cma.j.issn.1672-7088.2016.06.004 |
CHEN Y, JIANG X Y, YANG M L, et al. lnvestigation on the fall efficacy of elderly people in nursing homes and its influencing factors[J]. Chinese Journal of Practical Nursing, 2016, 32(6):412-425. 10.3760/cma.j.issn.1672-7088.2016.06.004 | |
3 | PIERLEONI P, BELLI A, PALMA L, et al. A high reliability wearable device for elderly fall detection[J]. IEEE Sensors Journal, 2015, 15(8):4544-4553. 10.1109/jsen.2015.2423562 |
4 | KHANM S, YU M, FENG P M, et al. An unsupervised acoustic fall detection system using source separation for sound interference suppression[J]. Signal Processing, 2015, 110:199-210. 10.1016/j.sigpro.2014.08.021 |
5 | SUCERQUIA A, LÓPEZ J D, VARGAS-BONILLA J F. Real-life/real-time elderly fall detection with a triaxial accelerometer[J]. Sensors, 2018, 18(4): No.1101. 10.3390/s18041101 |
6 | CHEN K H, HSU Y W, YANG J J, et al. Enhanced characterization of an accelerometer-based fall detection algorithm using a repository[J]. Instrumentation Science and Technology, 2017, 45(4):382-391. 10.1080/10739149.2016.1268155 |
7 | 朱艳,张亚萍,利曙生,等. 基于深度视觉传感器和卷积神经网络的跌倒检测算法[J]. 光学技术, 2021, 47(1):56-61. |
ZHU Y, ZHANG Y P, LI S S, et al. Fall detection algorithm based on depth vision sensor and convolution neural network[J]. Optical Technique, 2021, 47(1):56-61. | |
8 | SALEH M, LE BOUQUIN JEANNÈS R. Elderly fall detection using wearable sensors: a low cost highly accurate algorithm[J]. IEEE Sensors Journal, 2019, 19(8):3156-3164. 10.1109/jsen.2019.2891128 |
9 | 郭欣,王红豆,孙连浩,等. 基于改进姿态估计算法的嵌入式平台实时跌倒检测[J]. 科学技术与工程, 2020, 20(30):12500-12506. 10.3969/j.issn.1671-1815.2020.30.035 |
GUO X, WANG H D, SUN L H, et al. Real-time fall detection for embedded platform based on improved pose estimation algorithm[J]. Science Technology and Engineering, 2020, 20(30):12500-12506. 10.3969/j.issn.1671-1815.2020.30.035 | |
10 | 于乃功,柏德国. 基于姿态估计的实时跌倒检测算法[J]. 控制与决策, 2020, 35(11):2761-2766. 10.13195/j.kzyjc.2019.0382 |
YU N G, BAI D G. Real-time fall detection algorithm based on pose estimation[J]. Control and Decision, 2020, 35(11):2761-2766. 10.13195/j.kzyjc.2019.0382 | |
11 | CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:1302-1310. 10.1109/cvpr.2017.143 |
12 | MA C, SHIMADA A, UCHIYAMA H, et al. Fall detection using optical level anonymous image sensing system[J]. Optics and Laser Technology, 2019, 110:44-61. 10.1016/j.optlastec.2018.07.013 |
13 | DE MIGUEL K, BRUNETE A, HERNANDO M, et al. Home camera-based fall detection system for the elderly[J]. Sensors, 2017, 17(12): No.2864. 10.3390/s17122864 |
14 | 曹建荣,吕俊杰,武欣莹,等. 融合运动特征和深度学习的跌倒检测算法[J]. 计算机应用, 2021, 41(2):583-589. |
CAO J R, LYU J J, WU X Y, et al. Fall detection algorithm integrating motion features and deep learning[J]. Journal of Computer Applications, 2021, 41(2):583-589. | |
15 | NÚÑEZ-MARCOS A, AZKUNE G, ARGANDA-CARRERAS I. Vision-based fall detection with convolutional neural networks[J]. Wireless Communications and Mobile Computing, 2017, 2017: No.9474806. 10.1155/2017/9474806 |
16 | GAMMULLE H, DENMAN S, SRIDHARAN S, et al. Two stream LSTM: a deep fusion framework for human action recognition[C]// Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2017:177-186. 10.1109/wacv.2017.27 |
17 | FANG H S, XIE S Q, TAI Y W, et al. RMPE: regional multi-person pose estimation[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017:2353-2362. 10.1109/iccv.2017.256 |
18 | 赵雪章,丁犇,席运江. 视频监控下利用改进型YOLOv3的弱监督式异常行为检测[J]. 光学技术, 2021, 47(1):120-128. |
ZHAO X Z, DING B, XI Y J. Weak supervised abnormal behavior detection using improved YOLOv3 under video surveillance[J]. Optical Technique, 2021, 47(1):120-128. | |
19 | CHARFI I, MITERAN J, DUBOIS J, et al. Optimized spatiotemporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification[J]. Journal of Electronic Imaging, 2013, 22(4): No.041106. 10.1117/1.jei.22.4.041106 |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[3] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[4] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[5] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[9] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[10] | Zhangjian JI, Na DU. Tiny target detection based on improved VariFocalNet [J]. Journal of Computer Applications, 2024, 44(7): 2200-2207. |
[11] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[12] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[13] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[15] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||