| 1 | 章佳辰. 临床检验自动化流水线的应用与展望[J]. 现代工业经济和信息化, 2021, 11(2):124-125. | 
																													
																							| 2 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. | 
																													
																							| 3 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:779-788. | 
																													
																							| 4 | 吴祝清,谭逢富,李冬秀,等. 基于YOLOv5的试管样本液位检测[J]. 中国医疗设备, 2023, 38(4):61-67. | 
																													
																							| 5 | 任克勤,陶青川. 基于YOLOv5的试管检测算法[J]. 现代计算机, 2022, 28(7):1-7, 14. | 
																													
																							| 6 | 宋霄罡,张冬冬,张鹏飞,等. 面向复杂施工环境的实时目标检测算法[J]. 计算机应用, 2024, 44(5):1605-1612. | 
																													
																							| 7 | 刘赏,周煜炜,代娆,等. 融合注意力和上下文信息的遥感图像小目标检测算法[J/OL].计算机应用,2024 [2024-04-28]. . | 
																													
																							| 8 | 刘子洋,徐慧英,朱信忠,等. Bi-YOLO:一种基于YOLOv8改进的轻量化目标检测算法[J].计算机工程与科学,2024,46(8):1444-1454. | 
																													
																							| 9 | 熊恩杰,张荣芬,刘宇红,等. 面向交通标志的Ghost-YOLOv8检测算法[J]. 计算机工程与应用, 2023, 59(20):200-207. | 
																													
																							| 10 | 王呈,王炀,荣英佼. 面向配电柜字符识别的YOLOv7-MSBP目标定位算法[J]. 计算机应用, 2024, 44(10):3191-3199. | 
																													
																							| 11 | 蔡舒妤,何冲. 基于FDG-YOLO轻量化模型的航空发动机损伤检测方法[J/OL].北京航空航天大学学报,2024 [2024-07-16]. . | 
																													
																							| 12 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2023-12-10]. . | 
																													
																							| 13 | XIAO B, NGUYEN M, YAN W Q. Fruit ripeness identification using YOLOv8 model[J]. Multimedia Tools and Applications, 2024, 83(9): 28039-28056. | 
																													
																							| 14 | JIN Y, GAO H, FAN X, et al. Defect identification of adhesive structure based on DCGAN and YOLOv5[J]. IEEE Access, 2022, 10: 79913-79924. | 
																													
																							| 15 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. | 
																													
																							| 16 | ZHANG S, CHI C, YAO Y, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9756-9765. | 
																													
																							| 17 | XU S, WANG X, LV W, et al. PP-YOLOE: an evolved version of YOLO[EB/OL]. [2023-12-10]. . | 
																													
																							| 18 | WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. [2024-05-10]. . | 
																													
																							| 19 | LI Y, CHEN Y, WANG N, et al. Scale-aware trident networks for object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6053-6062. | 
																													
																							| 20 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. | 
																													
																							| 21 | LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution [EB/OL]. [2023-12-10]. . | 
																													
																							| 22 | ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[EB/OL]. [2023-12-10]. . | 
																													
																							| 23 | ZHONG J, CHEN J, MIAN A. DualConv: dual convolutional kernels for lightweight deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 9528-9535. | 
																													
																							| 24 | ZHANG J, LI X, LI J, et al. Rethinking mobile block for efficient attention-based models[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 1389-1400. | 
																													
																							| 25 | MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3138-3147. | 
																													
																							| 26 | HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. | 
																													
																							| 27 | LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2023-12-10]. . | 
																													
																							| 28 | XU X, JIANG Y, CHEN W, et al. Damo-YOLO: a report on real-time object detection design[EB/OL]. [2023-12-10]. . | 
																													
																							| 29 | YANG G, LEI J, ZHU Z, et al. AFPN: asymptotic feature pyramid network for object detection[C]// Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2023: 2184-2189. | 
																													
																							| 30 | ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection[C]// Proceedings of the 2024 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2024: 16965-16974. |