Journal of Computer Applications ›› 0, Vol. ›› Issue (): 296-301.DOI: 10.11772/j.issn.1001-9081.2024050576

• Multimedia computing and computer simulation • Previous Articles     Next Articles

Test tube and liquid level recognition algorithm based on improved YOLOv8

Ke ZHANG1,2, Yuangang PENG2, Yueming WANG3, Jianxin TANG1()   

  1. 1.College of Life Science and Chemistry,Hunan University of Technology,Zhuzhou Hunan 412007,China
    2.Changsha YHLO Biotech Company Limited,Shenzhen YHLO Biotech Company Limited,Changsha Hunan 410006,China
    3.Shenzhen YAMCANDA Information Technology Company Limited,Shenzhen YHLO Biotech Company Limited,Shenzhen Guangdong 518100,China
  • Received:2024-05-08 Revised:2024-07-05 Accepted:2024-07-15 Online:2025-01-24 Published:2024-12-31
  • Contact: Jianxin TANG

基于改进YOLOv8的试管及液位识别算法

张科1,2, 彭远刚2, 王跃明3, 汤建新1()   

  1. 1.湖南工业大学 生命科学与化学学院,湖南 株洲 412007
    2.深圳市亚辉龙生物科技股份有限公司 长沙亚辉龙生物科技有限公司,长沙 410006
    3.深圳市亚辉龙生物科技股份有限公司 深圳市亚加达信息技术有限公司,广东 深圳 518100
  • 通讯作者: 汤建新
  • 作者简介:张科(2000—),男,河北邯郸人,硕士研究生,主要研究方向:图像识别、目标检测
    彭远刚(1988—),男,四川乐山人,主要研究方向:生物医疗器械
    王跃明(1976—),男,湖南娄底人,主要研究方向:软件工程
    汤建新(1965—):男,湖南宁乡人,教授,博士生导师,主要研究方向:生物医用材料、生物芯片与传感器件。
  • 基金资助:
    国家自然科学基金资助项目(51774128);湖南省自然科学基金资助项目(2023JJ50184)

Abstract:

In the preprocessing stage of fully automatic medical inspection pipelines, a test tube and liquid level detection algorithm based on improved YOLOv8 was proposed to address the issues of low recognition rate and low speed of test tube sizes and liquid levels in traditional detection methods. Firstly, a lightweight ADown module was employed to replace the Conv module in the backbone network for feature extraction and downsampling, thereby extracting more effective information while reducing the model size. Secondly, Bi-directional Feature Pyramid Network (BiFPN) was utilized for feature fusion, and more hierarchical feature information was integrated through bidirectional and skip connections. Additionally, Omni-dimensional Dynamic Convolution (ODConv) was introduced at the neck, and the C2f-ODConv module was designed to enhance feature extraction capabilities. Finally, the Inner-CIoU bounding box loss function was introduced to accelerate model convergence by auxiliary bounding boxes. Experimental results demonstrate that the proposed algorithm achieves improvements of 3.6, 4.8 and 5.0 percentage points in precision, recall and mean Average Precision (mAP)@50, and a decrease in computational cost (FLOPs) by 13.6% on a self-made dataset. It can be seen that the proposed model can realize accurate recognition of test tubes and liquid levels in real scenarios.

Key words: YOLOv8, test tube detection, liquid level detection, Bi-directional Feature Pyramid Network (BiFPN), Omni-dimensional Dynamic Convolution (ODConv), auxiliary bounding box

摘要:

在全自动医疗检验流水线的前处理阶段,针对传统检测方法检测试管规格和液位的识别率低、速度慢等问题,提出一种基于改进YOLOv8的试管及液位识别算法。首先,采用轻量化ADown模块替换主干网络中的Conv模块以进行特征提取和下采样,从而在减小模型大小的同时提取更多有效信息;其次,采用双向特征金字塔网络(BiFPN)进行特征融合,通过双向连接和跳跃连接融合更多层次的特征信息;同时,在颈部引入全维动态卷积(ODConv)并设计C2f-ODConv模块,以增强特征提取的能力;最后,引入Inner-CIoU边框损失函数,从而通过辅助边框加速模型收敛。实验结果表明,所提算法在自制的数据集上的精确率、召回率和平均精度均值(mAP@50)分别提升了3.6、4.8和5.0个百分点,计算量(FLOPs)下降了13.6%。可见,所提模型可实现真实场景下对试管与液位的准确识别。

关键词: YOLOv8, 试管检测, 液位检测, 双向特征金字塔网络, 全维动态卷积, 辅助边框

CLC Number: