Journal of Computer Applications ›› 0, Vol. ›› Issue (): 302-308.DOI: 10.11772/j.issn.1001-9081.2024020189
• Multimedia computing and computer simulation • Previous Articles Next Articles
Received:
2024-02-27
Revised:
2024-04-10
Accepted:
2024-04-15
Online:
2025-01-24
Published:
2024-12-31
Contact:
Diye XIN
通讯作者:
忻迪晔
作者简介:
忻迪晔(2002—),男,上海人,主要研究方向:深度学习、模式识别、生成对抗网络、目标检测CLC Number:
Diye XIN, Huaicheng YAN. Surface defect detection of strip steel based on GS-YOLO model[J]. Journal of Computer Applications, 0, (): 302-308.
忻迪晔, 严怀成. 基于GS-YOLO模型的带钢表面缺陷检测[J]. 《计算机应用》唯一官方网站, 0, (): 302-308.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020189
模型 | 参数量/106 | 计算量/GFLOPs |
---|---|---|
YOLOv5s | 7.02 | 15.8 |
YOLOv5+Ghost | 4.91 | 10.4 |
模型 | 参数量/106 | 计算量/GFLOPs |
---|---|---|
YOLOv5s | 7.02 | 15.8 |
YOLOv5+Ghost | 4.91 | 10.4 |
编号 | 模块 | P/% | R/% | mAP@0.5 | 参数量/106 | 计算量/GFLOPs | ||
---|---|---|---|---|---|---|---|---|
Ghost | SE | GD | ||||||
0 | 78.06 | 75.11 | 79.82 | 7.02 | 15.8 | |||
1 | 78.89 | 75.46 | 80.68 | 4.91 | 10.4 | |||
2 | 73.31 | 76.64 | 80.89 | 7.19 | 16.1 | |||
3 | 75.77 | 76.79 | 81.23 | 9.19 | 20.1 | |||
4 | 78.38 | 76.23 | 81.87 | 5.07 | 10.7 | |||
5 | 77.36 | 80.07 | 81.33 | 7.52 | 15.4 | |||
6 | 79.21 | 77.31 | 81.81 | 9.77 | 21.4 | |||
7 | 79.38 | 80.29 | 82.38 | 7.64 | 15.4 |
编号 | 模块 | P/% | R/% | mAP@0.5 | 参数量/106 | 计算量/GFLOPs | ||
---|---|---|---|---|---|---|---|---|
Ghost | SE | GD | ||||||
0 | 78.06 | 75.11 | 79.82 | 7.02 | 15.8 | |||
1 | 78.89 | 75.46 | 80.68 | 4.91 | 10.4 | |||
2 | 73.31 | 76.64 | 80.89 | 7.19 | 16.1 | |||
3 | 75.77 | 76.79 | 81.23 | 9.19 | 20.1 | |||
4 | 78.38 | 76.23 | 81.87 | 5.07 | 10.7 | |||
5 | 77.36 | 80.07 | 81.33 | 7.52 | 15.4 | |||
6 | 79.21 | 77.31 | 81.81 | 9.77 | 21.4 | |||
7 | 79.38 | 80.29 | 82.38 | 7.64 | 15.4 |
模型 | P/% | R/% | mAP@50 | 参数量/106 | 帧率/(frame·s-1) | 计算量/GFLOPs |
---|---|---|---|---|---|---|
SVM[ | 55.01 | 59.43 | ||||
K-means[ | 52.17 | 55.78 | ||||
Faster-RCNN[ | 69.45 | 76.83 | 76.92 | 56.06 | 101.6 | 124.2 |
Cascade-RCNN[ | 75.02 | 72.01 | 77.41 | 75.37 | 78.8 | 197.5 |
SSD[ | 66.52 | 70.31 | 70.63 | 46.99 | 443.5 | 73.2 |
YOLOv3[ | 67.83 | 71.15 | 72.38 | 52.69 | 417.4 | 16.2 |
YOLOv5s[ | 78.06 | 75.11 | 79.82 | 7.02 | 218.6 | 15.8 |
YOLOv7s[ | 77.93 | 79.72 | 80.57 | 36.82 | 139.8 | 14.4 |
GS-YOLO | 79.38 | 80.29 | 82.38 | 7.64 | 98.8 | 15.4 |
模型 | P/% | R/% | mAP@50 | 参数量/106 | 帧率/(frame·s-1) | 计算量/GFLOPs |
---|---|---|---|---|---|---|
SVM[ | 55.01 | 59.43 | ||||
K-means[ | 52.17 | 55.78 | ||||
Faster-RCNN[ | 69.45 | 76.83 | 76.92 | 56.06 | 101.6 | 124.2 |
Cascade-RCNN[ | 75.02 | 72.01 | 77.41 | 75.37 | 78.8 | 197.5 |
SSD[ | 66.52 | 70.31 | 70.63 | 46.99 | 443.5 | 73.2 |
YOLOv3[ | 67.83 | 71.15 | 72.38 | 52.69 | 417.4 | 16.2 |
YOLOv5s[ | 78.06 | 75.11 | 79.82 | 7.02 | 218.6 | 15.8 |
YOLOv7s[ | 77.93 | 79.72 | 80.57 | 36.82 | 139.8 | 14.4 |
GS-YOLO | 79.38 | 80.29 | 82.38 | 7.64 | 98.8 | 15.4 |
1 | 蒋晨,张韵,江海涛,等. SPHC热轧带钢表面氧化铁皮缺陷观察与分析[J]. 天津冶金, 2022(1): 58-62. |
2 | 付光,焦会立,吴耐,等. 热轧带钢表面缺陷自动判定系统及其应用[J]. 轧钢, 2023, 40(3): 97-102. |
3 | 张洪涛,段发阶,丁克勤,等. 带钢表面缺陷视觉检测系统关键技术研究[J]. 计量学报, 2007, 28(3): 216-219. |
4 | 崔庆胜,尹海潮,周婷婷,等. 红外测宽技术及其在热轧带钢宽度检测中的应用[J]. 仪表技术与传感器, 2009(1): 43-44, 52. |
5 | 许德刚,王露,李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25. |
6 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. |
7 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. |
8 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. |
9 | CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162. |
10 | 王子琦,管振玉,朱轶昇,等. 基于改进级联RCNN的遥感图像目标检测[J]. 计算机工程与设计, 2023, 44(1): 194-202. |
11 | 陆尧,薛林,王云森,等. 基于Cascade RCNN的热轧带钢表面缺陷检测[J]. 仪表技术与传感器, 2023(8): 101-106. |
12 | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. |
13 | ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2778-2788. |
14 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
15 | 鞠默然,罗海波,王仲博,等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): No.0715004. |
16 | 邱天衡,王玲,王鹏,等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13):63-73. |
17 | 李维刚,叶欣,赵云涛,等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7):1284-1292. |
18 | 卢俊哲,张铖怡,刘世鹏,等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15):318-328. |
19 | 马燕婷,赵红东,阎超,等. 改进YOLOv5网络的带钢表面缺陷检测方法[J]. 电子测量与仪器学报, 2022, 36(8): 150-157. |
20 | 黄健,张钢. 深度卷积神经网络的目标检测算法综述[J]. 计算机工程与应用, 2020, 56(17): 12-23. |
21 | LIU Z, GAO Y, DU Q, et al. YOLO-extract: improved YOLOv5 for aircraft object detection in remote sensing images[J]. IEEE Access, 2023, 11: 1742-1751. |
22 | XU R, LIN H, LU K, et al. A forest fire detection system based on ensemble learning [J]. Forests, 2021, 12(2): No.217. |
23 | ZHANG T, ZHANG Y, XIN M, et al. A light-weight network for small insulator and defect detection using UAV imaging based on improved YOLOv5[J]. Sensors, 2023, 23(11): No.5249. |
24 | FAN Y, LI Y, SHI Y, et al. Application of YOLOv5 neural network based on improved attention mechanism in recognition of Thangka image defects[J]. KSII Transactions on Internet and Information Systems, 2022, 16(1): 245-265. |
25 | 杜紫薇,周恒,李承阳,等. 面向深度卷积神经网络的小目标检测算法综述[J]. 计算机科学, 2022, 49(12):205-218. |
26 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
27 | HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. |
28 | WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2023: 51094-51112. |
29 | GUO Y, YIN X, ZHAO X, et al. Hyperspectral image classification with SVM and guided filter[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: No.56. |
30 | JARDIM S, ANTÓNIO J, MORA C. Graphical image region extraction with K-Means clustering and watershed[J]. Journal of Imaging, 2022, 8(6): No.163. |
31 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. |
[1] | Chun XU, Shuangyan JI, Huan MA, Enwei SUN, Mengmeng WANG, Mingyu SU. Consultation recommendation method based on knowledge graph and dialogue structure [J]. Journal of Computer Applications, 2025, 45(4): 1157-1168. |
[2] | Jie HU, Qiyang ZHENG, Jun SUN, Yan ZHANG. Multi-label classification model based on multi-label relational graph and local dynamic reconstruction learning [J]. Journal of Computer Applications, 2025, 45(4): 1104-1112. |
[3] | Qingqing ZHAO, Bin HU. Moving pedestrian detection neural network with invariant global sparse contour point representation [J]. Journal of Computer Applications, 2025, 45(4): 1271-1284. |
[4] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. |
[5] | Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder [J]. Journal of Computer Applications, 2025, 45(4): 1325-1332. |
[6] | Yang HOU, Qiong ZHANG, Zixuan ZHAO, Zhengyu ZHU, Xiaobo ZHANG. YOLOv5s-MRD: efficient fire and smoke detection algorithm for complex scenarios based on YOLOv5s [J]. Journal of Computer Applications, 2025, 45(4): 1317-1324. |
[7] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. |
[8] | Kunyuan JIANG, Xiaoxia LI, Li WANG, Yaodan CAO, Xiaoqiang ZHANG, Nan DING, Yingyue ZHOU. Boundary-cross supervised semantic segmentation network with decoupled residual self-attention [J]. Journal of Computer Applications, 2025, 45(4): 1120-1129. |
[9] | Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text [J]. Journal of Computer Applications, 2025, 45(4): 1177-1183. |
[10] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. |
[11] | Hao ZHOU, Chao WANG, Guoheng CUI, Tingjin LUO. Visual question answering model based on association and fusion of multiple semantic features [J]. Journal of Computer Applications, 2025, 45(3): 739-745. |
[12] | Chuanhao ZHANG, Xiaohan TU, Xuehui GU, Bo XUAN. LiDAR-camera 3D object detection based on multi-modal information mutual guidance and supplementation [J]. Journal of Computer Applications, 2025, 45(3): 946-952. |
[13] | Haijun GENG, Yun DONG, Zhiguo HU, Haotian CHI, Jing YANG, Xia YIN. Encrypted traffic classification method based on Attention-1DCNN-CE [J]. Journal of Computer Applications, 2025, 45(3): 872-882. |
[14] | Songsen YU, Zhifan LIN, Guopeng XUE, Jianyu XU. Lightweight large-format tile defect detection algorithm based on improved YOLOv8 [J]. Journal of Computer Applications, 2025, 45(2): 647-654. |
[15] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||