Journal of Computer Applications ›› 0, Vol. ›› Issue (): 302-308.DOI: 10.11772/j.issn.1001-9081.2024020189
• Multimedia computing and computer simulation • Previous Articles Next Articles
Received:2024-02-27
															
							
																	Revised:2024-04-10
															
							
																	Accepted:2024-04-15
															
							
							
																	Online:2025-01-24
															
							
																	Published:2024-12-31
															
							
						Contact:
								Diye XIN   
													通讯作者:
					忻迪晔
							作者简介:忻迪晔(2002—),男,上海人,主要研究方向:深度学习、模式识别、生成对抗网络、目标检测CLC Number:
Diye XIN, Huaicheng YAN. Surface defect detection of strip steel based on GS-YOLO model[J]. Journal of Computer Applications, 0, (): 302-308.
忻迪晔, 严怀成. 基于GS-YOLO模型的带钢表面缺陷检测[J]. 《计算机应用》唯一官方网站, 0, (): 302-308.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024020189
| 模型 | 参数量/106 | 计算量/GFLOPs | 
|---|---|---|
| YOLOv5s | 7.02 | 15.8 | 
| YOLOv5+Ghost | 4.91 | 10.4 | 
| 模型 | 参数量/106 | 计算量/GFLOPs | 
|---|---|---|
| YOLOv5s | 7.02 | 15.8 | 
| YOLOv5+Ghost | 4.91 | 10.4 | 
| 编号 | 模块 | P/% | R/% | mAP@0.5 | 参数量/106 | 计算量/GFLOPs | ||
|---|---|---|---|---|---|---|---|---|
| Ghost | SE | GD | ||||||
| 0 | 78.06 | 75.11 | 79.82 | 7.02 | 15.8 | |||
| 1 | 78.89 | 75.46 | 80.68 | 4.91 | 10.4 | |||
| 2 | 73.31 | 76.64 | 80.89 | 7.19 | 16.1 | |||
| 3 | 75.77 | 76.79 | 81.23 | 9.19 | 20.1 | |||
| 4 | 78.38 | 76.23 | 81.87 | 5.07 | 10.7 | |||
| 5 | 77.36 | 80.07 | 81.33 | 7.52 | 15.4 | |||
| 6 | 79.21 | 77.31 | 81.81 | 9.77 | 21.4 | |||
| 7 | 79.38 | 80.29 | 82.38 | 7.64 | 15.4 | |||
| 编号 | 模块 | P/% | R/% | mAP@0.5 | 参数量/106 | 计算量/GFLOPs | ||
|---|---|---|---|---|---|---|---|---|
| Ghost | SE | GD | ||||||
| 0 | 78.06 | 75.11 | 79.82 | 7.02 | 15.8 | |||
| 1 | 78.89 | 75.46 | 80.68 | 4.91 | 10.4 | |||
| 2 | 73.31 | 76.64 | 80.89 | 7.19 | 16.1 | |||
| 3 | 75.77 | 76.79 | 81.23 | 9.19 | 20.1 | |||
| 4 | 78.38 | 76.23 | 81.87 | 5.07 | 10.7 | |||
| 5 | 77.36 | 80.07 | 81.33 | 7.52 | 15.4 | |||
| 6 | 79.21 | 77.31 | 81.81 | 9.77 | 21.4 | |||
| 7 | 79.38 | 80.29 | 82.38 | 7.64 | 15.4 | |||
| 模型 | P/% | R/% | mAP@50 | 参数量/106 | 帧率/(frame·s-1) | 计算量/GFLOPs | 
|---|---|---|---|---|---|---|
| SVM[ | 55.01 | 59.43 | ||||
| K-means[ | 52.17 | 55.78 | ||||
| Faster-RCNN[ | 69.45 | 76.83 | 76.92 | 56.06 | 101.6 | 124.2 | 
| Cascade-RCNN[ | 75.02 | 72.01 | 77.41 | 75.37 | 78.8 | 197.5 | 
| SSD[ | 66.52 | 70.31 | 70.63 | 46.99 | 443.5 | 73.2 | 
| YOLOv3[ | 67.83 | 71.15 | 72.38 | 52.69 | 417.4 | 16.2 | 
| YOLOv5s[ | 78.06 | 75.11 | 79.82 | 7.02 | 218.6 | 15.8 | 
| YOLOv7s[ | 77.93 | 79.72 | 80.57 | 36.82 | 139.8 | 14.4 | 
| GS-YOLO | 79.38 | 80.29 | 82.38 | 7.64 | 98.8 | 15.4 | 
| 模型 | P/% | R/% | mAP@50 | 参数量/106 | 帧率/(frame·s-1) | 计算量/GFLOPs | 
|---|---|---|---|---|---|---|
| SVM[ | 55.01 | 59.43 | ||||
| K-means[ | 52.17 | 55.78 | ||||
| Faster-RCNN[ | 69.45 | 76.83 | 76.92 | 56.06 | 101.6 | 124.2 | 
| Cascade-RCNN[ | 75.02 | 72.01 | 77.41 | 75.37 | 78.8 | 197.5 | 
| SSD[ | 66.52 | 70.31 | 70.63 | 46.99 | 443.5 | 73.2 | 
| YOLOv3[ | 67.83 | 71.15 | 72.38 | 52.69 | 417.4 | 16.2 | 
| YOLOv5s[ | 78.06 | 75.11 | 79.82 | 7.02 | 218.6 | 15.8 | 
| YOLOv7s[ | 77.93 | 79.72 | 80.57 | 36.82 | 139.8 | 14.4 | 
| GS-YOLO | 79.38 | 80.29 | 82.38 | 7.64 | 98.8 | 15.4 | 
| 1 | 蒋晨,张韵,江海涛,等. SPHC热轧带钢表面氧化铁皮缺陷观察与分析[J]. 天津冶金, 2022(1): 58-62. | 
| 2 | 付光,焦会立,吴耐,等. 热轧带钢表面缺陷自动判定系统及其应用[J]. 轧钢, 2023, 40(3): 97-102. | 
| 3 | 张洪涛,段发阶,丁克勤,等. 带钢表面缺陷视觉检测系统关键技术研究[J]. 计量学报, 2007, 28(3): 216-219. | 
| 4 | 崔庆胜,尹海潮,周婷婷,等. 红外测宽技术及其在热轧带钢宽度检测中的应用[J]. 仪表技术与传感器, 2009(1): 43-44, 52. | 
| 5 | 许德刚,王露,李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25. | 
| 6 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. | 
| 7 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. | 
| 8 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. | 
| 9 | CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162. | 
| 10 | 王子琦,管振玉,朱轶昇,等. 基于改进级联RCNN的遥感图像目标检测[J]. 计算机工程与设计, 2023, 44(1): 194-202. | 
| 11 | 陆尧,薛林,王云森,等. 基于Cascade RCNN的热轧带钢表面缺陷检测[J]. 仪表技术与传感器, 2023(8): 101-106. | 
| 12 | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. | 
| 13 | ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2778-2788. | 
| 14 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. | 
| 15 | 鞠默然,罗海波,王仲博,等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): No.0715004. | 
| 16 | 邱天衡,王玲,王鹏,等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13):63-73. | 
| 17 | 李维刚,叶欣,赵云涛,等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7):1284-1292. | 
| 18 | 卢俊哲,张铖怡,刘世鹏,等. 面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO[J]. 计算机工程与应用, 2023, 59(15):318-328. | 
| 19 | 马燕婷,赵红东,阎超,等. 改进YOLOv5网络的带钢表面缺陷检测方法[J]. 电子测量与仪器学报, 2022, 36(8): 150-157. | 
| 20 | 黄健,张钢. 深度卷积神经网络的目标检测算法综述[J]. 计算机工程与应用, 2020, 56(17): 12-23. | 
| 21 | LIU Z, GAO Y, DU Q, et al. YOLO-extract: improved YOLOv5 for aircraft object detection in remote sensing images[J]. IEEE Access, 2023, 11: 1742-1751. | 
| 22 | XU R, LIN H, LU K, et al. A forest fire detection system based on ensemble learning [J]. Forests, 2021, 12(2): No.217. | 
| 23 | ZHANG T, ZHANG Y, XIN M, et al. A light-weight network for small insulator and defect detection using UAV imaging based on improved YOLOv5[J]. Sensors, 2023, 23(11): No.5249. | 
| 24 | FAN Y, LI Y, SHI Y, et al. Application of YOLOv5 neural network based on improved attention mechanism in recognition of Thangka image defects[J]. KSII Transactions on Internet and Information Systems, 2022, 16(1): 245-265. | 
| 25 | 杜紫薇,周恒,李承阳,等. 面向深度卷积神经网络的小目标检测算法综述[J]. 计算机科学, 2022, 49(12):205-218. | 
| 26 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. | 
| 27 | HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586. | 
| 28 | WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2023: 51094-51112. | 
| 29 | GUO Y, YIN X, ZHAO X, et al. Hyperspectral image classification with SVM and guided filter[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019: No.56. | 
| 30 | JARDIM S, ANTÓNIO J, MORA C. Graphical image region extraction with K-Means clustering and watershed[J]. Journal of Imaging, 2022, 8(6): No.163. | 
| 31 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. | 
| [1] | Lili WEI, Lirong YAN, Xiaofen TANG. Contextual semantic representation and pixel relationship correction for few-shot object detection [J]. Journal of Computer Applications, 2025, 45(9): 2993-3002. | 
| [2] | Yilin DENG, Fajiang YU. Pseudo random number generator based on LSTM and separable self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2893-2901. | 
| [3] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. | 
| [4] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. | 
| [5] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. | 
| [6] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. | 
| [7] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. | 
| [8] | Fang WANG, Jing HU, Rui ZHANG, Wenting FAN. Medical image segmentation network with content-guided multi-angle feature fusion [J]. Journal of Computer Applications, 2025, 45(9): 3017-3025. | 
| [9] | Jiaxiang ZHANG, Xiaoming LI, Jiahui ZHANG. Few-shot object detection algorithm based on new category feature enhancement and metric mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2984-2992. | 
| [10] | Chengzhi YAN, Ying CHEN, Kai ZHONG, Han GAO. 3D object detection algorithm based on multi-scale network and axial attention [J]. Journal of Computer Applications, 2025, 45(8): 2537-2545. | 
| [11] | Yanhua LIAO, Yuanxia YAN, Wenlin PAN. Multi-target detection algorithm for traffic intersection images based on YOLOv9 [J]. Journal of Computer Applications, 2025, 45(8): 2555-2565. | 
| [12] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. | 
| [13] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. | 
| [14] | Binhong XIE, Yingkun LA, Yingjun ZHANG, Rui ZHANG. Semi-supervised object detection framework guided by self-paced learning [J]. Journal of Computer Applications, 2025, 45(8): 2546-2554. | 
| [15] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
