Journal of Computer Applications ›› 0, Vol. ›› Issue (): 286-295.DOI: 10.11772/j.issn.1001-9081.2023121749
• Multimedia computing and computer simulation • Previous Articles Next Articles
Ziyuan ZHOU1,2, Miao CHENG1,2,3(
), Lian HE1,2,3, Jiacheng ZHANG3
Received:2023-12-03
Revised:2024-03-12
Accepted:2024-03-14
Online:2025-01-24
Published:2024-12-31
Contact:
Miao CHENG
周子渊1,2, 成苗1,2,3(
), 何莲1,2,3, 张佳成3
通讯作者:
成苗
作者简介:周子渊(2000—),男,四川成都人,硕士研究生,主要研究方向:人工智能、机器视觉CLC Number:
Ziyuan ZHOU, Miao CHENG, Lian HE, Jiacheng ZHANG. Small and elongated object detection model based on improved YOLOv8[J]. Journal of Computer Applications, 0, (): 286-295.
周子渊, 成苗, 何莲, 张佳成. 基于改进YOLOv8的小目标与细长目标检测模型[J]. 《计算机应用》唯一官方网站, 0, (): 286-295.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121749
| 颈部结构 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
|---|---|---|---|---|
| PAN | 40.7 | 77.1 | 3.0 | 8.1 |
| BiFPN | 40.5 | 76.6 | 3.1 | 8.3 |
| AFPN | 40.9 | 78.1 | 3.4 | 8.7 |
| Smallod | 40.9 | 77.5 | 3.1 | 12.2 |
| Slimneck | 40.0 | 75.8 | 2.8 | 7.3 |
| WPAN(本文) | 42.1 | 80.9 | 4.1 | 9.7 |
| 颈部结构 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
|---|---|---|---|---|
| PAN | 40.7 | 77.1 | 3.0 | 8.1 |
| BiFPN | 40.5 | 76.6 | 3.1 | 8.3 |
| AFPN | 40.9 | 78.1 | 3.4 | 8.7 |
| Smallod | 40.9 | 77.5 | 3.1 | 12.2 |
| Slimneck | 40.0 | 75.8 | 2.8 | 7.3 |
| WPAN(本文) | 42.1 | 80.9 | 4.1 | 9.7 |
| 特征交互模块 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
|---|---|---|---|---|
| SPPF | 40.7 | 77.1 | 3.0 | 8.1 |
| SPPFCSP | 40.6 | 75.5 | 4.6 | 9.4 |
| SimCSPSPPF | 40.7 | 78.8 | 3.4 | 8.4 |
| SE | 41.1 | 78.1 | 3.0 | 8.1 |
| CA | 40.3 | 79.3 | 3.0 | 8.1 |
| BAM | 41.2 | 79.2 | 3.0 | 8.1 |
| CBAM | 40.8 | 79.6 | 3.0 | 8.1 |
| Biformer | 41.6 | 78.6 | 3.3 | 62.4 |
| LSKA | 40.6 | 78.1 | 3.0 | 8.3 |
| AMFI(本文) | 41.3 | 80.1 | 3.0 | 8.3 |
| 特征交互模块 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
|---|---|---|---|---|
| SPPF | 40.7 | 77.1 | 3.0 | 8.1 |
| SPPFCSP | 40.6 | 75.5 | 4.6 | 9.4 |
| SimCSPSPPF | 40.7 | 78.8 | 3.4 | 8.4 |
| SE | 41.1 | 78.1 | 3.0 | 8.1 |
| CA | 40.3 | 79.3 | 3.0 | 8.1 |
| BAM | 41.2 | 79.2 | 3.0 | 8.1 |
| CBAM | 40.8 | 79.6 | 3.0 | 8.1 |
| Biformer | 41.6 | 78.6 | 3.3 | 62.4 |
| LSKA | 40.6 | 78.1 | 3.0 | 8.3 |
| AMFI(本文) | 41.3 | 80.1 | 3.0 | 8.3 |
边界框回归 损失函数 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
|---|---|---|---|---|
| CIoU | 40.7 | 77.1 | 3.0 | 8.1 |
| EIoU | 39.3 | 77.7 | 3.0 | 8.1 |
| SIoU | 40.3 | 77.8 | 3.0 | 8.1 |
| MPDIoU | 40.1 | 76.9 | 3.0 | 8.1 |
| Wise-IoU | 40.9 | 78.1 | 3.0 | 8.1 |
| NWD | 41.0 | 77.0 | 3.0 | 8.1 |
NWD&Inner-CIoU (本文) | 41.1 | 78.6 | 3.0 | 8.1 |
边界框回归 损失函数 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
|---|---|---|---|---|
| CIoU | 40.7 | 77.1 | 3.0 | 8.1 |
| EIoU | 39.3 | 77.7 | 3.0 | 8.1 |
| SIoU | 40.3 | 77.8 | 3.0 | 8.1 |
| MPDIoU | 40.1 | 76.9 | 3.0 | 8.1 |
| Wise-IoU | 40.9 | 78.1 | 3.0 | 8.1 |
| NWD | 41.0 | 77.0 | 3.0 | 8.1 |
NWD&Inner-CIoU (本文) | 41.1 | 78.6 | 3.0 | 8.1 |
| 模型 | mAP50:95/ % | mAP50/ % | 参数量/ 106 | 计算量/GFLOPs |
|---|---|---|---|---|
| Faster-RCNN(VGG16) | 40.6 | 77.3 | 136.9 | 118.5 |
| SSD300 | 40.4 | 62.9 | 30.8 | 24.7 |
| EfficientDet-D2 | 41.0 | 79.6 | 8.0 | 10.4 |
| FCOS | 41.3 | 72.7 | 32.1 | 80.7 |
| YOLOv5n | 38.2 | 75.5 | 2.5 | 7.1 |
| YOLOv5s | 40.6 | 79.3 | 9.1 | 23.8 |
| YOLOv6n | 39.7 | 76.0 | 4.2 | 11.8 |
| YOLOv6s | 40.0 | 78.7 | 16.3 | 44.0 |
| YOLOv8n | 40.7 | 77.1 | 3.0 | 8.1 |
| YOLOv8s | 42.2 | 79.6 | 11.1 | 28.5 |
| YOLOv8m | 42.3 | 79.9 | 25.8 | 78.7 |
| YOLOv8l | 42.5 | 80.1 | 43.6 | 164.9 |
| YOLOv8x | 42.7 | 81.0 | 68.1 | 257.4 |
| RT-DETR-R50 | 38.5 | 66.1 | 42.8 | 135.8 |
| RT-DETR-R101 | 40.5 | 67.1 | 76.6 | 259.2 |
| 本文模型 | 42.6 | 81.7 | 4.1 | 9.9 |
| 模型 | mAP50:95/ % | mAP50/ % | 参数量/ 106 | 计算量/GFLOPs |
|---|---|---|---|---|
| Faster-RCNN(VGG16) | 40.6 | 77.3 | 136.9 | 118.5 |
| SSD300 | 40.4 | 62.9 | 30.8 | 24.7 |
| EfficientDet-D2 | 41.0 | 79.6 | 8.0 | 10.4 |
| FCOS | 41.3 | 72.7 | 32.1 | 80.7 |
| YOLOv5n | 38.2 | 75.5 | 2.5 | 7.1 |
| YOLOv5s | 40.6 | 79.3 | 9.1 | 23.8 |
| YOLOv6n | 39.7 | 76.0 | 4.2 | 11.8 |
| YOLOv6s | 40.0 | 78.7 | 16.3 | 44.0 |
| YOLOv8n | 40.7 | 77.1 | 3.0 | 8.1 |
| YOLOv8s | 42.2 | 79.6 | 11.1 | 28.5 |
| YOLOv8m | 42.3 | 79.9 | 25.8 | 78.7 |
| YOLOv8l | 42.5 | 80.1 | 43.6 | 164.9 |
| YOLOv8x | 42.7 | 81.0 | 68.1 | 257.4 |
| RT-DETR-R50 | 38.5 | 66.1 | 42.8 | 135.8 |
| RT-DETR-R101 | 40.5 | 67.1 | 76.6 | 259.2 |
| 本文模型 | 42.6 | 81.7 | 4.1 | 9.9 |
| 模型 | mAP50:95/ % | mAP50/ % | 参数量/ 106 | 计算量/GFLOPs |
|---|---|---|---|---|
| YOLOv8n | 40.7 | 77.1 | 3.0 | 8.1 |
| +WPAN | 42.1 | 80.9 | 4.1 | 9.7 |
| +WPAN+AMFI | 42.3 | 81.4 | 4.1 | 9.9 |
| +WANI | 42.6 | 81.7 | 4.1 | 9.9 |
| 模型 | mAP50:95/ % | mAP50/ % | 参数量/ 106 | 计算量/GFLOPs |
|---|---|---|---|---|
| YOLOv8n | 40.7 | 77.1 | 3.0 | 8.1 |
| +WPAN | 42.1 | 80.9 | 4.1 | 9.7 |
| +WPAN+AMFI | 42.3 | 81.4 | 4.1 | 9.9 |
| +WANI | 42.6 | 81.7 | 4.1 | 9.9 |
| 模型 | mAP50:95/ % | mAP50/ % | 参数量 /106 | 计算量/GFLOPs |
|---|---|---|---|---|
| YOLOv8n | 38.8 | 74.2 | 3.0 | 8.1 |
| YOLOv8s | 38.5 | 73.7 | 11.1 | 28.4 |
| 本文模型 | 40.3 | 76.1 | 4.1 | 9.9 |
| 模型 | mAP50:95/ % | mAP50/ % | 参数量 /106 | 计算量/GFLOPs |
|---|---|---|---|---|
| YOLOv8n | 38.8 | 74.2 | 3.0 | 8.1 |
| YOLOv8s | 38.5 | 73.7 | 11.1 | 28.4 |
| 本文模型 | 40.3 | 76.1 | 4.1 | 9.9 |
| 1 | 曹家乐,李亚利,孙汉卿,等. 基于深度学习的视觉目标检测技术综述[J]. 中国图象图形学报, 2022, 27(6): 1697-1722. |
| 2 | DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773. |
| 3 | QI Y, HE Y, QI X, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6047-6056. |
| 4 | LI J, LIANG X, WEI Y, et al. Perceptual generative adversarial networks for small object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1951-1959. |
| 5 | BAI Y, ZHANG Y, DING M, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham: Springer, 2018: 210-226. |
| 6 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. |
| 7 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. |
| 8 | GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7029-7038. |
| 9 | TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787. |
| 10 | ZHAO G, GE W, YU Y. GraphFPN: graph feature pyramid network for object detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2743-2752. |
| 11 | YANG G, LEI J, ZHU Z, et al. AFPN: asymptotic feature pyramid network for object detection[C]// Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2023: 2184-2189. |
| 12 | WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[EB/OL]. [2023-06-14].. |
| 13 | ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[EB/OL]. [2023-12-14].. |
| 14 | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. |
| 15 | LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[EB/OL]. [2023-11-25].. |
| 16 | ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. [2023-08-06].. |
| 17 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
| 18 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. |
| 19 | PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.92. |
| 20 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
| 21 | LAU K W, PO L M, REHMAN Y A UR. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: No.121352. |
| 22 | ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection [EB/OL]. [2023-03-18].. |
| 23 | ZHU L, WANG X, KE Z, et al. BiFormer: vision Transformer with bi-level routing attention[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 10323-10333. |
| 24 | OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning [C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
| 25 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. |
| 26 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-04-23].. |
| 27 | MSEDDI W S, GHALI R, JMAL M, et al. Fire detection and segmentation using YOLOv5 and U-Net [C]// Proceedings of the 29th European Signal Processing Conference. Piscataway: IEEE, 2021: 741-745. |
| 28 | CHEN Q, WANG Y, YANG T, et al. You only look one-level feature[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13034-13043. |
| 29 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. |
| 30 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. |
| 31 | ZHANG H, CHANG H, MA B, et al. Dynamic R-CNN: towards high quality object detection via dynamic training [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12360. Cham: Springer, 2020: 260-275. |
| 32 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 213-229. |
| 33 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. |
| 34 | YU J, JIANG Y, WANG Z, et al. UnitBox: an advanced object detection network[C]// Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 516-520. |
| 35 | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666. |
| 36 | ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12993-13000. |
| 37 | ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation [J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. |
| 38 | ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157. |
| 39 | GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. [2023-05-25].. |
| 40 | TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2023-04-08].. |
| 41 | MA S, XU Y. MDPIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2023-09-14].. |
| 42 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149. |
| 43 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
| 44 | CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162. |
| 45 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. |
| 46 | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. |
| 47 | LI H, LI J, WEI H, et al. Slim-Neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2023-08-17].. |
| 48 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |
| 49 | LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications [EB/OL]. [2023-08-07].. |
| 50 | HE Y, SONG K, MENG Q, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504. |
| [1] | Lili WEI, Lirong YAN, Xiaofen TANG. Contextual semantic representation and pixel relationship correction for few-shot object detection [J]. Journal of Computer Applications, 2025, 45(9): 2993-3002. |
| [2] | Yilin DENG, Fajiang YU. Pseudo random number generator based on LSTM and separable self-attention mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2893-2901. |
| [3] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [4] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
| [5] | Jiaxiang ZHANG, Xiaoming LI, Jiahui ZHANG. Few-shot object detection algorithm based on new category feature enhancement and metric mechanism [J]. Journal of Computer Applications, 2025, 45(9): 2984-2992. |
| [6] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
| [7] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
| [8] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| [9] | Binhong XIE, Yingkun LA, Yingjun ZHANG, Rui ZHANG. Semi-supervised object detection framework guided by self-paced learning [J]. Journal of Computer Applications, 2025, 45(8): 2546-2554. |
| [10] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
| [11] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [12] | Chengzhi YAN, Ying CHEN, Kai ZHONG, Han GAO. 3D object detection algorithm based on multi-scale network and axial attention [J]. Journal of Computer Applications, 2025, 45(8): 2537-2545. |
| [13] | Yanhua LIAO, Yuanxia YAN, Wenlin PAN. Multi-target detection algorithm for traffic intersection images based on YOLOv9 [J]. Journal of Computer Applications, 2025, 45(8): 2555-2565. |
| [14] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
| [15] | Liang CHEN, Xuan WANG, Kun LEI. Helmet wearing detection algorithm for complex scenarios based on cross-layer multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(7): 2333-2341. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||