Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (6): 1963-1970.DOI: 10.11772/j.issn.1001-9081.2024060850
• Multimedia computing and computer simulation • Previous Articles
Received:
2024-06-24
Revised:
2024-09-11
Accepted:
2024-09-14
Online:
2024-09-25
Published:
2025-06-10
Contact:
Maodong PAN
About author:
SONG Yuanyuan, born in 2001, M. S. candidate. Her research interests include computational geometry and computer graphics.Supported by:
通讯作者:
潘茂东
作者简介:
宋媛媛(2001—),女,江苏淮安人,硕士研究生,CCF会员, 主要研究方向:计算几何与计算机图形学基金资助:
CLC Number:
Yuanyuan SONG, Maodong PAN. 3D domain parameterization method based on high-dimensional quasi-conformal mapping[J]. Journal of Computer Applications, 2025, 45(6): 1963-1970.
宋媛媛, 潘茂东. 基于高维拟共形映射的三维区域参数化方法[J]. 《计算机应用》唯一官方网站, 2025, 45(6): 1963-1970.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060850
模型 | ||
---|---|---|
普朗克 | 0.85 | 1.00 |
鸭子 | 0.85 | 1.00 |
考拉 | 0.90 | 0.95 |
海豚 | 1.00 | 0.95 |
雕像 | 1.00 | 0.90 |
Tab.1 Values of parameter α1 and α2 for different models
模型 | ||
---|---|---|
普朗克 | 0.85 | 1.00 |
鸭子 | 0.85 | 1.00 |
考拉 | 0.90 | 0.95 |
海豚 | 1.00 | 0.95 |
雕像 | 1.00 | 0.90 |
模型 | 方法 | 是否 双射 | 体积一致性 | |||
---|---|---|---|---|---|---|
max | min | avg | 方差 | |||
普朗克 | 本文方法 | 是 | 1.675 6 | 0.034 6 | 0.969 6 | 0.169 8 |
是 | 4.147 2 | 0.867 4 | 0.991 7 | 0.762 5 | ||
是 | 1.243 6 | 0.804 3 | 0.985 8 | 0.201 0 | ||
鸭子 | 本文方法 | 是 | 2.711 3 | 0.000 7 | 0.276 4 | 0.313 1 |
是 | 6.355 1 | 0.026 0 | 0.301 5 | 0.447 2 | ||
否 | ||||||
考拉 | 本文方法 | 是 | 0.923 3 | 0.001 4 | 0.211 8 | 0.082 3 |
是 | 0.990 2 | 0.016 9 | 0.401 6 | 0.107 3 | ||
否 | ||||||
海豚 | 本文方法 | 是 | 0.997 9 | 0.002 4 | 0.306 5 | 0.171 3 |
是 | 1.003 5 | 0.018 6 | 0.312 8 | 0.210 9 | ||
是 | 0.772 1 | 0.014 8 | 0.327 0 | 0.092 0 | ||
雕像 | 本文方法 | 是 | 0.999 1 | 0.000 7 | 0.200 9 | 0.122 8 |
是 | 2.444 5 | 0.010 3 | 0.145 6 | 0.273 1 | ||
否 |
Tab.2 Bijectivity and volume uniformity of different models
模型 | 方法 | 是否 双射 | 体积一致性 | |||
---|---|---|---|---|---|---|
max | min | avg | 方差 | |||
普朗克 | 本文方法 | 是 | 1.675 6 | 0.034 6 | 0.969 6 | 0.169 8 |
是 | 4.147 2 | 0.867 4 | 0.991 7 | 0.762 5 | ||
是 | 1.243 6 | 0.804 3 | 0.985 8 | 0.201 0 | ||
鸭子 | 本文方法 | 是 | 2.711 3 | 0.000 7 | 0.276 4 | 0.313 1 |
是 | 6.355 1 | 0.026 0 | 0.301 5 | 0.447 2 | ||
否 | ||||||
考拉 | 本文方法 | 是 | 0.923 3 | 0.001 4 | 0.211 8 | 0.082 3 |
是 | 0.990 2 | 0.016 9 | 0.401 6 | 0.107 3 | ||
否 | ||||||
海豚 | 本文方法 | 是 | 0.997 9 | 0.002 4 | 0.306 5 | 0.171 3 |
是 | 1.003 5 | 0.018 6 | 0.312 8 | 0.210 9 | ||
是 | 0.772 1 | 0.014 8 | 0.327 0 | 0.092 0 | ||
雕像 | 本文方法 | 是 | 0.999 1 | 0.000 7 | 0.200 9 | 0.122 8 |
是 | 2.444 5 | 0.010 3 | 0.145 6 | 0.273 1 | ||
否 |
模型 | 方法 | 是否 双射 | 正交性 (最佳情况下 | ||
---|---|---|---|---|---|
max | min | avg | |||
普朗克 | 本文方法 | 是 | 0.992 6 | 0.001 7 | 0.669 7 |
调和映射 | 否 | 0.986 9 | 0.000 0 | 0.666 8 | |
ADMM-LRP | 是 | 0.986 3 | 0.072 1 | 0.655 3 | |
鸭子 | 本文方法 | 是 | 0.977 7 | 0.010 6 | 0.551 6 |
调和映射 | 否 | 0.988 9 | 0.000 3 | 0.540 1 | |
ADMM-LRP | 是 | 0.973 4 | 0.006 0 | 0.498 6 | |
考拉 | 本文方法 | 是 | 0.989 2 | 0.008 8 | 0.422 1 |
调和映射 | 否 | 0.970 3 | 0.000 2 | 0.421 8 | |
TTS | 是 | 0.980 8 | 0.006 5 | 0.393 9 | |
海豚 | 本文方法 | 是 | 0.578 7 | 0.001 3 | 0.055 3 |
调和映射 | 否 | 0.415 3 | 0.000 0 | 0.059 6 | |
TTS | 是 | 0.397 2 | 0.001 2 | 0.052 3 | |
雕像 | 本文方法 | 是 | 0.856 0 | 0.004 3 | 0.162 9 |
调和映射 | 否 | 0.954 5 | 0.000 1 | 0.353 3 | |
TTS | 是 | 0.913 8 | 0.009 3 | 0.185 8 |
Tab.3 Bijectivity and orthogonality of different models
模型 | 方法 | 是否 双射 | 正交性 (最佳情况下 | ||
---|---|---|---|---|---|
max | min | avg | |||
普朗克 | 本文方法 | 是 | 0.992 6 | 0.001 7 | 0.669 7 |
调和映射 | 否 | 0.986 9 | 0.000 0 | 0.666 8 | |
ADMM-LRP | 是 | 0.986 3 | 0.072 1 | 0.655 3 | |
鸭子 | 本文方法 | 是 | 0.977 7 | 0.010 6 | 0.551 6 |
调和映射 | 否 | 0.988 9 | 0.000 3 | 0.540 1 | |
ADMM-LRP | 是 | 0.973 4 | 0.006 0 | 0.498 6 | |
考拉 | 本文方法 | 是 | 0.989 2 | 0.008 8 | 0.422 1 |
调和映射 | 否 | 0.970 3 | 0.000 2 | 0.421 8 | |
TTS | 是 | 0.980 8 | 0.006 5 | 0.393 9 | |
海豚 | 本文方法 | 是 | 0.578 7 | 0.001 3 | 0.055 3 |
调和映射 | 否 | 0.415 3 | 0.000 0 | 0.059 6 | |
TTS | 是 | 0.397 2 | 0.001 2 | 0.052 3 | |
雕像 | 本文方法 | 是 | 0.856 0 | 0.004 3 | 0.162 9 |
调和映射 | 否 | 0.954 5 | 0.000 1 | 0.353 3 | |
TTS | 是 | 0.913 8 | 0.009 3 | 0.185 8 |
模型 | 方法 | 体积一致性 (最佳情况下 | |||
---|---|---|---|---|---|
max | min | avg | 方差 | ||
普朗克 | 本文方法 | 1.675 6 | 0.034 6 | 0.969 6 | 0.169 8 |
调和映射 | 2.329 1 | 0.018 5 | 0.972 9 | 0.218 8 | |
ADMM-LRP | 4.719 7 | 0.047 8 | 1.000 2 | 0.174 0 | |
鸭子 | 本文方法 | 2.711 3 | 0.000 7 | 0.276 4 | 0.313 1 |
调和映射 | 12.625 4 | 0.003 4 | 0.509 3 | 0.589 5 | |
ADMM-LRP | 19.491 5 | 0.003 2 | 0.555 1 | 0.738 9 | |
考拉 | 本文方法 | 0.923 3 | 0.001 4 | 0.211 8 | 0.082 3 |
调和映射 | 14.342 0 | 0.004 9 | 0.515 2 | 0.653 9 | |
TTS | 8.806 1 | 0.002 2 | 0.376 5 | 0.384 5 | |
海豚 | 本文方法 | 0.997 9 | 0.002 4 | 0.306 5 | 0.171 3 |
调和映射 | 1.643 6 | 0.003 9 | 0.470 2 | 0.314 1 | |
TTS | 1.330 2 | 0.004 1 | 0.336 2 | 0.177 0 | |
雕像 | 本文方法 | 0.999 1 | 0.000 7 | 0.200 9 | 0.122 8 |
调和映射 | 5.872 0 | 0.056 5 | 2.335 7 | 0.692 2 | |
TTS | 6.264 3 | 0.006 0 | 0.383 1 | 0.296 1 |
Tab.4 Volume uniformity of different models
模型 | 方法 | 体积一致性 (最佳情况下 | |||
---|---|---|---|---|---|
max | min | avg | 方差 | ||
普朗克 | 本文方法 | 1.675 6 | 0.034 6 | 0.969 6 | 0.169 8 |
调和映射 | 2.329 1 | 0.018 5 | 0.972 9 | 0.218 8 | |
ADMM-LRP | 4.719 7 | 0.047 8 | 1.000 2 | 0.174 0 | |
鸭子 | 本文方法 | 2.711 3 | 0.000 7 | 0.276 4 | 0.313 1 |
调和映射 | 12.625 4 | 0.003 4 | 0.509 3 | 0.589 5 | |
ADMM-LRP | 19.491 5 | 0.003 2 | 0.555 1 | 0.738 9 | |
考拉 | 本文方法 | 0.923 3 | 0.001 4 | 0.211 8 | 0.082 3 |
调和映射 | 14.342 0 | 0.004 9 | 0.515 2 | 0.653 9 | |
TTS | 8.806 1 | 0.002 2 | 0.376 5 | 0.384 5 | |
海豚 | 本文方法 | 0.997 9 | 0.002 4 | 0.306 5 | 0.171 3 |
调和映射 | 1.643 6 | 0.003 9 | 0.470 2 | 0.314 1 | |
TTS | 1.330 2 | 0.004 1 | 0.336 2 | 0.177 0 | |
雕像 | 本文方法 | 0.999 1 | 0.000 7 | 0.200 9 | 0.122 8 |
调和映射 | 5.872 0 | 0.056 5 | 2.335 7 | 0.692 2 | |
TTS | 6.264 3 | 0.006 0 | 0.383 1 | 0.296 1 |
模型 | 本文方法 迭代次数 | 计算时间/min | |||
---|---|---|---|---|---|
本文方法 | 调和映射 | ADMM-LRP | TTS | ||
普朗克 | 100 | 36.48 | 0.06 | 32.95 | |
鸭子 | 46 | 0.03 | 6.62 | 21.90 | |
考拉 | 68 | 0.09 | 33.05 | 23.44 | |
海豚 | 100 | 43.53 | 0.12 | 40.52 | |
雕像 | 83 | 32.41 | 0.09 | 45.25 |
Tab.5 Comparison of iterations and computation time
模型 | 本文方法 迭代次数 | 计算时间/min | |||
---|---|---|---|---|---|
本文方法 | 调和映射 | ADMM-LRP | TTS | ||
普朗克 | 100 | 36.48 | 0.06 | 32.95 | |
鸭子 | 46 | 0.03 | 6.62 | 21.90 | |
考拉 | 68 | 0.09 | 33.05 | 23.44 | |
海豚 | 100 | 43.53 | 0.12 | 40.52 | |
雕像 | 83 | 32.41 | 0.09 | 45.25 |
1 | HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39/40/41): 4135-4195. |
2 | 吴紫俊,黄正东,左兵权,等. 等几何分析研究概述[J]. 机械工程学报, 2015, 51(5): 114-129. |
WU Z J, HUANG Z D, ZUO B Q, et al. Perspectives on isogeometric analysis[J]. Journal of Mechanical Engineering, 2015, 51(5): 114-129. | |
3 | COHEN E, MARTIN T, KIRBY R M, et al. Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5/6/7/8):334-356. |
4 | PILGERSTORFER E, JÜTTLER B. Bounding the influence of domain parameterization and knot spacing on numerical stability in isogeometric analysis [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 268:589-613. |
5 | NIAN X, CHEN F. Planar domain parameterization for isogeometric analysis based on Teichmüller mapping [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 311: 41-55. |
6 | FARIN G, HANSFORD D. Discrete Coons patches [J]. Computer Aided Geometric Design, 1999, 16(7):691-700. |
7 | XU G, MOURRAIN B, DUVIGNEAU R, et al. Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method[J]. Journal of Computational Physics, 2013, 252:275-289. |
8 | PAN M, CHEN F, TONG W. Volumetric spline parameterization for isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 359: No.112769. |
9 | XU G, MOURRAIN B, DUVIGNEAU R, et al. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications[J]. Computer-Aided Design, 2013, 45(2):395-404. |
10 | JI Y, WANG M Y, PAN M D, et al. Penalty function-based volumetric parameterization method for isogeometric analysis [J]. Computer Aided Geometric Design, 2022, 94: No.102081. |
11 | 孙钊,刘浩,柴双明,等. 面向等几何分析的低扭曲B样条体参数化 [J]. 计算机辅助设计与图形学学报, 2023, 35(8): 1175-1183. |
SUN Z, LIU H, CHAI S M, et al. Computing low-distortion B-spline volumetric domain parameterizations for IGA[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(8): 1175-1183. | |
12 | PAN M, CHEN F. Low-rank parameterization of volumetric domains for isogeometric analysis[J]. Computer-Aided Design, 2019, 114:82-90. |
13 | ESCOBAR J M, CASCÓN J M, RODRÍGUEZ E, et al. A new approach to solid modeling with trivariate T-splines based on mesh optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(45/46):3210-3222. |
14 | CHAN C L, ANITESCU C, RABCZUK T. Volumetric parametrization from a level set boundary representation with PHT-splines [J]. Computer-Aided Design, 2017, 82:29-41. |
15 | ZHENG Y, CHEN F. Volumetric parameterization with truncated hierarchical B-splines for isogeometric analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 401(Pt B): No.115662. |
16 | FALINI A, ŠPEH J, JÜTTLER B. Planar domain parameterization with THB-splines[J]. Computer Aided Geometric Design, 2015, 35/36:95-108. |
17 | BERS L. Quasiconformal mappings, with applications to differential equations, function theory and topology [J]. Bulletin of the American Mathematical Society, 1977, 83(6): 1083-1100. |
18 | PAN M, CHEN F. Constructing planar domain parameterization with HB-splines via quasi-conformal mapping[J]. Computer Aided Geometric Design, 2022, 97: No.102133. |
19 | 刘浩洋,户将,李勇锋,等. 最优化:建模、算法与理论[M]. 北京:高等教育出版社, 2020: 248-251. |
LIU H Y, HU J, LI Y F, et al. Optimization: modeling, algorithm and theory [M]. Beijing: Higher Education Press, 2020: 248-251. | |
20 | 施法中. 计算机辅助几何设计与非均匀有理B样条(修订版)[M]. 北京:高等教育出版社, 2013: 219-220. |
SHI F Z. Computer aided geometric design and non-uniform rational B-spline (revision)[M]. Beijing: Higher Education Press, 2013: 219-220. | |
21 | HEINONEN J. What is a quasiconformal mapping[J]. Notices of the AMS, 2006, 53(11):1334-1335. |
22 | MARTIN G J. The theory of quasiconformal mappings in higher dimensions, I[EB/OL]. [2024-09-01]. . |
23 | KOSKELA P. Lectures on quasiconformal and quasisymmetric mappings[EB/OL]. [2024-09-01].. |
24 | LIU H, YANG Y, LIU Y, et al. Simultaneous interior and boundary optimization of volumetric domain parameterizations for IGA[J]. Computer Aided Geometric Design, 2020, 79: No.101853. |
25 | ZHANG J, PENG Y, OUYANG W, et al. Accelerating ADMM for efficient simulation and optimization[J]. ACM Transaction on Graphics, 2019, 38(6): No.163. |
[1] | YU Songsen, HE Huang, XUE Guopeng, CUI Hengtuo. Quantitative grading method for ceramic tile color difference based on improved FENet [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | . Power image retrieval method based on improved Swin Transformer [J]. Journal of Computer Applications, 0, (): 0-0. |
[3] | . Multi-dimensional frequency domain feature fusion for human-object interaction detection [J]. Journal of Computer Applications, 0, (): 0-0. |
[4] | . Low-overlap point cloud registration network integrating position encoding and overlapping masks [J]. Journal of Computer Applications, 0, (): 0-0. |
[5] | XUE Suling, HE Jinxu, WEI Wenjie, HE Yingying, LOU Lu. Fast implicit neural surface reconstruction based on dynamic occupancy grid [J]. Journal of Computer Applications, 0, (): 0-0. |
[6] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[7] | Wenpeng WANG, Yinchang QIN, Wenxuan SHI. Review of unsupervised deep learning methods for industrial defect detection [J]. Journal of Computer Applications, 2025, 45(5): 1658-1670. |
[8] | Junyan ZHANG, Yiming ZHAO, Bing LIN, Yunping WU. Chinese image captioning method based on multi-level visual and dynamic text-image interaction [J]. Journal of Computer Applications, 2025, 45(5): 1520-1527. |
[9] | LIU Xiaoxia, KUANG Liqun, WANG Song, JIAO Shichao, HAN Huiyan, XIONG Fengguang. Multi-scale spatio-temporal decoupling for contrastive learning of skeleton action recognition [J]. Journal of Computer Applications, 0, (): 0-0. |
[10] | . UAV target detection algorithm based on improved YOLOv11 [J]. Journal of Computer Applications, 0, (): 0-0. |
[11] | . Nighttime vehicle detection algorithm based on spatial and channel synergistic attention mechanism [J]. Journal of Computer Applications, 0, (): 0-0. |
[12] | . Multiscale perception-based multidimensional spatial fusion for underwater image enhancement [J]. Journal of Computer Applications, 0, (): 0-0. |
[13] | . Multi-target 3D visual grounding method based on monocular images [J]. Journal of Computer Applications, 0, (): 0-0. |
[14] | . Domain adaptation nighttime object detection method with photometric alignment [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | . Action quality assessment model based on new trajectory-guided perceptual learning with X3D [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||