Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1439-1446.DOI: 10.11772/j.issn.1001-9081.2024050730
• 2024 China Granular Computing and Knowledge Discovery Conference (CGCKD2024) • Previous Articles
Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN()
Received:
2024-06-03
Revised:
2024-07-12
Accepted:
2024-07-18
Online:
2024-08-12
Published:
2025-05-10
Contact:
Yanyan CHEN
About author:
LI Hui, born in 1979, Ph. D., professor. Her research interests include image processing, computer vision.Supported by:
李慧, 贾炳志, 王晨曦, 董子宇, 李纪龙, 仲兆满, 陈艳艳()
通讯作者:
陈艳艳
作者简介:
李慧(1979—),女,江苏连云港人,教授,博士,主要研究方向:图像处理、计算机视觉基金资助:
CLC Number:
Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer[J]. Journal of Computer Applications, 2025, 45(5): 1439-1446.
李慧, 贾炳志, 王晨曦, 董子宇, 李纪龙, 仲兆满, 陈艳艳. 基于Swin Transformer的生成对抗网络水下图像增强模型[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1439-1446.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050730
实验序号 | 参数设置 | 评价指标 | ||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | UIQM | UCIQE | |||||
1 | 0.1 | 0.2 | 0.1 | 0.6 | 29.927 1 | 0.851 4 | 2.859 6 | 0.586 9 |
2 | 0.1 | 0.2 | 0.2 | 0.5 | 29.890 2 | 0.855 9 | 2.796 0 | 0.586 5 |
3 | 0.1 | 0.2 | 0.3 | 0.4 | 30.028 0 | 0.849 1 | 2.841 5 | 0.582 4 |
4 | 0.1 | 0.2 | 0.4 | 0.3 | 29.903 0 | 0.859 2 | 2.903 9 | 0.583 3 |
5 | 0.1 | 0.2 | 0.5 | 0.2 | 29.923 1 | 0.856 3 | 2.844 8 | 0.585 0 |
6 | 0.1 | 0.2 | 0.6 | 0.1 | 30.023 2 | 0.858 1 | 2.843 2 | 0.583 0 |
Tab. 1 Parameter comparison experimental results for loss functions
实验序号 | 参数设置 | 评价指标 | ||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | UIQM | UCIQE | |||||
1 | 0.1 | 0.2 | 0.1 | 0.6 | 29.927 1 | 0.851 4 | 2.859 6 | 0.586 9 |
2 | 0.1 | 0.2 | 0.2 | 0.5 | 29.890 2 | 0.855 9 | 2.796 0 | 0.586 5 |
3 | 0.1 | 0.2 | 0.3 | 0.4 | 30.028 0 | 0.849 1 | 2.841 5 | 0.582 4 |
4 | 0.1 | 0.2 | 0.4 | 0.3 | 29.903 0 | 0.859 2 | 2.903 9 | 0.583 3 |
5 | 0.1 | 0.2 | 0.5 | 0.2 | 29.923 1 | 0.856 3 | 2.844 8 | 0.585 0 |
6 | 0.1 | 0.2 | 0.6 | 0.1 | 30.023 2 | 0.858 1 | 2.843 2 | 0.583 0 |
模型 | UFO-120 | EUVP-515 | ||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | UIQM | UCIQE | PSNR/dB | SSIM | UIQM | UCIQE | |
UWCNN | 28.458 3 | 0.711 3 | 3.164 2 | 0.565 9 | 28.558 0 | 0.787 2 | 3.035 3 | 0.566 3 |
UGAN | 30.039 2 | 0.819 9 | 2.615 2 | 0.598 3 | 30.270 5 | 0.876 9 | 2.484 2 | 0.585 8 |
FUnIE_GAN | 30.237 9 | 0.826 2 | 2.440 8 | 0.598 1 | 30.216 1 | 0.865 4 | 2.437 7 | 0.592 1 |
Deep_SESR | 30.585 7 | 0.859 2 | 3.106 4 | 0.594 0 | 30.591 9 | 0.870 4 | 3.075 7 | 0.585 4 |
URSCT-SESR | 31.521 6 | 0.863 8 | 3.096 6 | 0.599 6 | 32.702 1 | 0.912 1 | 3.141 0 | 0.595 5 |
SwinGAN | 32.358 8 | 0.867 4 | 3.169 2 | 0.598 4 | 33.546 0 | 0.917 2 | 3.253 4 | 0.596 5 |
Tab. 2 Evaluation index comparison of different models on UFO-120 and EUVP-515 datasets
模型 | UFO-120 | EUVP-515 | ||||||
---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | UIQM | UCIQE | PSNR/dB | SSIM | UIQM | UCIQE | |
UWCNN | 28.458 3 | 0.711 3 | 3.164 2 | 0.565 9 | 28.558 0 | 0.787 2 | 3.035 3 | 0.566 3 |
UGAN | 30.039 2 | 0.819 9 | 2.615 2 | 0.598 3 | 30.270 5 | 0.876 9 | 2.484 2 | 0.585 8 |
FUnIE_GAN | 30.237 9 | 0.826 2 | 2.440 8 | 0.598 1 | 30.216 1 | 0.865 4 | 2.437 7 | 0.592 1 |
Deep_SESR | 30.585 7 | 0.859 2 | 3.106 4 | 0.594 0 | 30.591 9 | 0.870 4 | 3.075 7 | 0.585 4 |
URSCT-SESR | 31.521 6 | 0.863 8 | 3.096 6 | 0.599 6 | 32.702 1 | 0.912 1 | 3.141 0 | 0.595 5 |
SwinGAN | 32.358 8 | 0.867 4 | 3.169 2 | 0.598 4 | 33.546 0 | 0.917 2 | 3.253 4 | 0.596 5 |
模型 | W-MSA | FNN | 双卷积 | PSNR/dB | SSIM | UIQM | UCIQE |
---|---|---|---|---|---|---|---|
Model1 | √ | 29.431 | 0.842 | 2.368 | 0.439 | ||
Model2 | √ | √ | 29.503 | 0.783 | 2.775 | 0.590 | |
Model3 | √ | √ | 30.336 | 0.834 | 2.825 | 0.591 | |
本文模型 | √ | √ | √ | 33.546 | 0.917 | 3.253 | 0.596 |
Tab. 3 Evaluation index comparison of improved modules on EUVP-515 dataset
模型 | W-MSA | FNN | 双卷积 | PSNR/dB | SSIM | UIQM | UCIQE |
---|---|---|---|---|---|---|---|
Model1 | √ | 29.431 | 0.842 | 2.368 | 0.439 | ||
Model2 | √ | √ | 29.503 | 0.783 | 2.775 | 0.590 | |
Model3 | √ | √ | 30.336 | 0.834 | 2.825 | 0.591 | |
本文模型 | √ | √ | √ | 33.546 | 0.917 | 3.253 | 0.596 |
1 | 严浙平,曲思瑜,邢文.水下图像增强方法研究综述[J].智能系统学报,2022,17(5):860-873. |
YAN Z P, QU S Y, XING W. An overview of underwater image enhancement methods[J]. CAAI Transactions on Intelligent Systems,2022, 17(5): 860-873. | |
2 | DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014: 184-199. |
3 | 张婷,赵杏,陈文欣. 基于条件生成对抗网络的图像去雾方法[J]. 计算机应用,2021,41(S2):248-253. |
ZHANG T, ZHAO X, CHEN W X. Image dehazing method based on conditional generative adversarial network[J]. Journal of Computer Applications, 2021, 41(S2): 248-253. | |
4 | DOSOVISKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [EB/OL]. [2021-06-03]. . |
5 | WANG Y, ZHANG J, CAO Y, et al. A deep CNN method for underwater image enhancement [C]// Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 1382-1386. |
6 | ZHENG M, LUO W. Underwater image enhancement using improved CNN based defogging[J]. Electronics, 2022, 11(1): Article No. 150. |
7 | TANG Z, LI J, HUANG J, et al. Multi-scale convolution underwater image restoration network[J]. Machine Vision and Applications, 2022, 33(6): Article No. 85. |
8 | LI J, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2018, 3(1): 387-394. |
9 | FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]// Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 7159-7165. |
10 | WANG N, ZHOU Y, HAN F, et al. UWGAN: underwater GAN for real-world underwater color restoration and dehazing [EB/OL]. [2021-03-26]. . |
11 | CONG R, YANG W, ZHANG W, et al. PUGAN: physical model-guided underwater image enhancement using GAN with dual-discriminators[J]. IEEE Transactions on Image Processing, 2023, 32: 4472-4485. |
12 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
13 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. |
14 | PENG L, ZHU C, BIAN L. U-Shape Transformer for underwater image enhancement[J]. IEEE Transactions on Image Processing, 2023, 32: 3066-3079. |
15 | CHENG N, SUN Z, ZHU X, et al. A transformer-based network for perceptual contrastive underwater image enhancement[J]. Signal Processing: Image Communication, 2023, 118: Article No. 117032. |
16 | FAN C M, LIU T J, LIU K H. SUNet: Swin Transformer UNet for image denoising[C]// Proceedings of the 2022 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2022: 2333-2337. |
17 | YOU D, GAO X, KATAYAMA S. WPD-PCA-based laser welding process monitoring and defects diagnosis by using FNN and SVM[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 628-636. |
18 | MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2813-2821. |
19 | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5835-5843. |
20 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. |
21 | SEIF G, ANDROUTSOS D. Edge-based loss function for single image super-resolution[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2018: 1468-1472. |
22 | WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]// Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers — Volume 2. Piscataway: IEEE, 2003: 1398-1402. |
23 | ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57. |
24 | ISLAM M J, LUO P, SATTAR J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception [EB/OL]. [2024-10-14]. . |
25 | ISLAM M J, XIA Y, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234. |
26 | WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |
27 | PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541-551. |
28 | YANG M, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062-6071. |
29 | LI C, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: No. 107038. |
30 | REN T, XU H, JIANG G, et al. Reinforced Swin-Convs Transformer for simultaneous underwater sensing scene image enhancement and super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: No.4209616. |
[1] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[2] | Hong SHANGGUAN, Huiying REN, Xiong ZHANG, Xinglong HAN, Zhiguo GUI, Yanling WANG. Low-dose CT denoising model based on dual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2025, 45(2): 624-632. |
[3] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[4] | Haoran WANG, Dan YU, Yuli YANG, Yao MA, Yongle CHEN. Domain transfer intrusion detection method for unknown attacks on industrial control systems [J]. Journal of Computer Applications, 2024, 44(4): 1158-1165. |
[5] | Ning WU, Yangyang LUO, Huajie XU. Semantic segmentation method for remote sensing images based on multi-scale feature fusion [J]. Journal of Computer Applications, 2024, 44(3): 737-744. |
[6] | Sunjie YU, Hui ZENG, Shiyu XIONG, Hongzhou SHI. Incentive mechanism for federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(2): 344-352. |
[7] | Lin WANG, Jingliang LIU, Wuwei WANG. Small target detection method in UAV images based on fusion of dilated convolution and Transformer [J]. Journal of Computer Applications, 2024, 44(11): 3595-3602. |
[8] | Liqing QIU, Xiaopan SU. Personalized multi-layer interest extraction click-through rate prediction model [J]. Journal of Computer Applications, 2024, 44(11): 3411-3418. |
[9] | Hui ZHOU, Yuling CHEN, Xuewei WANG, Yangwen ZHANG, Jianjiang HE. Deep shadow defense scheme of federated learning based on generative adversarial network [J]. Journal of Computer Applications, 2024, 44(1): 223-232. |
[10] | Jia CHEN, Hong ZHANG. Image text retrieval method based on feature enhancement and semantic correlation matching [J]. Journal of Computer Applications, 2024, 44(1): 16-23. |
[11] | Anyang LIU, Huaici ZHAO, Wenlong CAI, Zechao XU, Ruideng XIE. Adaptive image deblurring generative adversarial network algorithm based on active discrimination mechanism [J]. Journal of Computer Applications, 2023, 43(7): 2288-2294. |
[12] | Shaoquan CHEN, Jianping CAI, Lan SUN. Differential privacy generative adversarial network algorithm with dynamic gradient threshold clipping [J]. Journal of Computer Applications, 2023, 43(7): 2065-2072. |
[13] | Xin JIN, Yangchuan LIU, Yechen ZHU, Zijian ZHANG, Xin GAO. Sinogram inpainting for sparse-view cone-beam computed tomography image reconstruction based on residual encoder-decoder generative adversarial network [J]. Journal of Computer Applications, 2023, 43(6): 1950-1957. |
[14] | Jinwen GUO, Xinghua MA, Gongning LUO, Wei WANG, Yang CAO, Kuanquan WANG. Guidewire artifact removal method of structure-enhanced IVOCT based on Transformer [J]. Journal of Computer Applications, 2023, 43(5): 1596-1605. |
[15] | Jiagao WU, Shiwen ZHANG, Yudong JIANG, Linfeng LIU. Social-interaction GAN for pedestrian trajectory prediction based on state-refinement long short-term memory and attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1565-1570. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||