Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1387-1394.DOI: 10.11772/j.issn.1001-9081.2024060882
• China Conference on Data Mining 2024 (CCDM 2024) • Previous Articles
Meng LUO1, Chao GAO2(), Zhen WANG3
Received:
2024-07-03
Revised:
2024-07-28
Accepted:
2024-08-02
Online:
2024-12-04
Published:
2025-05-10
Contact:
Chao GAO
About author:
LUO Meng, born in 2000, M. S. candidate. His research interests include multi-objective optimization, evolutionary computing.Supported by:
通讯作者:
高超
作者简介:
罗蒙(2000—),男,陕西汉中人,硕士研究生,CCF学生会员,主要研究方向:多目标优化、进化计算基金资助:
CLC Number:
Meng LUO, Chao GAO, Zhen WANG. Improvement method of heuristic vehicle routing algorithm based on constrained spectral clustering[J]. Journal of Computer Applications, 2025, 45(5): 1387-1394.
罗蒙, 高超, 王震. 基于带约束谱聚类的启发式车辆路径规划算法优化方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1387-1394.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024060882
算例 | 客户点数 | 车场数 | 车辆数 | 车辆最大承载量 |
---|---|---|---|---|
P01 | 50 | 4 | 4 | 80 |
P02 | 50 | 4 | 2 | 160 |
P03 | 75 | 5 | 3 | 140 |
P04 | 100 | 2 | 8 | 100 |
P05 | 100 | 2 | 5 | 200 |
P06 | 100 | 3 | 6 | 100 |
P07 | 100 | 4 | 4 | 100 |
P08 | 249 | 2 | 14 | 500 |
P09 | 249 | 3 | 12 | 500 |
P10 | 249 | 4 | 8 | 500 |
P11 | 249 | 5 | 6 | 500 |
P12 | 80 | 2 | 5 | 60 |
P13 | 80 | 2 | 5 | 60 |
P14 | 80 | 2 | 5 | 60 |
P23 | 360 | 9 | 5 | 60 |
Pr01 | 48 | 4 | 1 | 200 |
Pr02 | 96 | 4 | 2 | 195 |
Pr03 | 144 | 4 | 3 | 190 |
Pr04 | 192 | 4 | 4 | 185 |
Pr08 | 144 | 6 | 2 | 190 |
Pr09 | 216 | 6 | 3 | 180 |
Tab. 1 Main characteristics of each instance
算例 | 客户点数 | 车场数 | 车辆数 | 车辆最大承载量 |
---|---|---|---|---|
P01 | 50 | 4 | 4 | 80 |
P02 | 50 | 4 | 2 | 160 |
P03 | 75 | 5 | 3 | 140 |
P04 | 100 | 2 | 8 | 100 |
P05 | 100 | 2 | 5 | 200 |
P06 | 100 | 3 | 6 | 100 |
P07 | 100 | 4 | 4 | 100 |
P08 | 249 | 2 | 14 | 500 |
P09 | 249 | 3 | 12 | 500 |
P10 | 249 | 4 | 8 | 500 |
P11 | 249 | 5 | 6 | 500 |
P12 | 80 | 2 | 5 | 60 |
P13 | 80 | 2 | 5 | 60 |
P14 | 80 | 2 | 5 | 60 |
P23 | 360 | 9 | 5 | 60 |
Pr01 | 48 | 4 | 1 | 200 |
Pr02 | 96 | 4 | 2 | 195 |
Pr03 | 144 | 4 | 3 | 190 |
Pr04 | 192 | 4 | 4 | 185 |
Pr08 | 144 | 6 | 2 | 190 |
Pr09 | 216 | 6 | 3 | 180 |
参数 | 含义 | 取值 |
---|---|---|
约束矩阵系数 | 0.9 | |
边界点界定阈值 | 0.3 | |
需求信息界定上界 | ||
需求信息界定下界 | 0.25 | |
地理信息权重 | 0.8 |
Tab. 2 Symbols, meanings, and values of hyper-parameters of CSC
参数 | 含义 | 取值 |
---|---|---|
约束矩阵系数 | 0.9 | |
边界点界定阈值 | 0.3 | |
需求信息界定上界 | ||
需求信息界定下界 | 0.25 | |
地理信息权重 | 0.8 |
算例 | NMI | |||
---|---|---|---|---|
FCM | SCSC | K-means | 本文方法 | |
P01 | 0.660 8 | 0.670 0 | 0.451 0 | 0.792 2 |
P02 | 0.461 2 | 0.515 2 | 0.707 7 | 0.459 3 |
P03 | 0.494 7 | 0.558 3 | 0.566 2 | 0.744 0 |
P04 | 0.635 0 | 0.257 9 | 0.635 0 | 0.761 0 |
P05 | 0.530 0 | 0.261 1 | 0.000 8 | 0.454 0 |
P06 | 0.688 2 | 0.543 9 | 0.748 7 | 0.536 4 |
P07 | 0.509 4 | 0.500 0 | 0.509 8 | 0.586 5 |
P08 | 0.741 1 | 0.358 7 | 0.022 9 | 0.766 8 |
P09 | 0.501 4 | 0.434 2 | 0.501 4 | 0.654 6 |
P10 | 0.565 3 | 0.550 0 | 0.380 7 | 0.735 2 |
P11 | 0.554 9 | 0.532 6 | 0.591 4 | 0.743 2 |
P12 | 0.713 6 | 0.711 0 | 0.713 6 | 0.722 4 |
P13 | 0.713 6 | 0.721 0 | 0.713 6 | 0.722 4 |
P14 | 0.831 3 | 0.779 1 | 0.831 3 | 0.855 6 |
P23 | 0.688 0 | 0.878 5 | 0.640 8 | 0.894 0 |
Pr01 | 0.580 3 | 0.700 7 | 0.547 3 | 0.751 8 |
Pr02 | 0.522 4 | 0.626 3 | 0.497 1 | 0.667 9 |
Pr03 | 0.666 0 | 0.741 3 | 0.683 5 | 0.759 1 |
Pr04 | 0.559 3 | 0.777 0 | 0.464 6 | 0.745 5 |
Pr08 | 0.383 6 | 0.548 7 | 0.428 5 | 0.605 2 |
Pr09 | 0.565 9 | 0.717 0 | 0.583 8 | 0.747 0 |
Tab. 3 NMIs of different clustering methods on MDVRP dataset
算例 | NMI | |||
---|---|---|---|---|
FCM | SCSC | K-means | 本文方法 | |
P01 | 0.660 8 | 0.670 0 | 0.451 0 | 0.792 2 |
P02 | 0.461 2 | 0.515 2 | 0.707 7 | 0.459 3 |
P03 | 0.494 7 | 0.558 3 | 0.566 2 | 0.744 0 |
P04 | 0.635 0 | 0.257 9 | 0.635 0 | 0.761 0 |
P05 | 0.530 0 | 0.261 1 | 0.000 8 | 0.454 0 |
P06 | 0.688 2 | 0.543 9 | 0.748 7 | 0.536 4 |
P07 | 0.509 4 | 0.500 0 | 0.509 8 | 0.586 5 |
P08 | 0.741 1 | 0.358 7 | 0.022 9 | 0.766 8 |
P09 | 0.501 4 | 0.434 2 | 0.501 4 | 0.654 6 |
P10 | 0.565 3 | 0.550 0 | 0.380 7 | 0.735 2 |
P11 | 0.554 9 | 0.532 6 | 0.591 4 | 0.743 2 |
P12 | 0.713 6 | 0.711 0 | 0.713 6 | 0.722 4 |
P13 | 0.713 6 | 0.721 0 | 0.713 6 | 0.722 4 |
P14 | 0.831 3 | 0.779 1 | 0.831 3 | 0.855 6 |
P23 | 0.688 0 | 0.878 5 | 0.640 8 | 0.894 0 |
Pr01 | 0.580 3 | 0.700 7 | 0.547 3 | 0.751 8 |
Pr02 | 0.522 4 | 0.626 3 | 0.497 1 | 0.667 9 |
Pr03 | 0.666 0 | 0.741 3 | 0.683 5 | 0.759 1 |
Pr04 | 0.559 3 | 0.777 0 | 0.464 6 | 0.745 5 |
Pr08 | 0.383 6 | 0.548 7 | 0.428 5 | 0.605 2 |
Pr09 | 0.565 9 | 0.717 0 | 0.583 8 | 0.747 0 |
算例 | FMI | |||
---|---|---|---|---|
FCM | SCSC | K-means | 本文方法 | |
P01 | 0.578 9 | 0.572 5 | 0.578 9 | 0.678 3 |
P02 | 0.686 3 | 0.378 3 | 0.653 8 | 0.525 2 |
P03 | 0.565 5 | 0.465 4 | 0.646 0 | 0.737 1 |
P04 | 0.675 9 | 0.640 0 | 0.801 2 | 0.921 9 |
P05 | 0.518 9 | 0.226 2 | 0.494 1 | 0.769 8 |
P06 | 0.825 3 | 0.806 9 | 0.843 8 | 0.658 7 |
P07 | 0.501 7 | 0.541 3 | 0.501 7 | 0.583 1 |
P08 | 0.838 1 | 0.845 4 | 0.636 8 | 0.930 1 |
P09 | 0.690 2 | 0.515 0 | 0.711 1 | 0.670 2 |
P10 | 0.491 2 | 0.058 3 | 0.484 8 | 0.601 3 |
P11 | 0.551 1 | 0.337 4 | 0.562 1 | 0.764 3 |
P12 | 0.902 6 | 0.925 0 | 0.902 6 | 0.902 7 |
P13 | 0.902 6 | 0.925 0 | 0.902 6 | 0.902 7 |
P14 | 0.950 0 | 0.950 0 | 0.950 0 | 0.950 1 |
P23 | 0.752 5 | 0.100 0 | 0.734 8 | 0.761 0 |
Pr01 | 0.901 7 | 0.617 3 | 0.885 7 | 0.891 1 |
Pr02 | 0.671 6 | 0.711 5 | 0.619 7 | 0.633 9 |
Pr03 | 0.641 1 | 0.852 7 | 0.641 3 | 0.633 9 |
Pr04 | 0.786 4 | 0.906 7 | 0.773 5 | 0.815 6 |
Pr08 | 0.883 4 | 0.130 4 | 0.593 7 | 0.799 7 |
Pr09 | 0.420 4 | 0.491 5 | 0.517 8 | 0.606 7 |
Tab. 4 FMIs of different clustering methods on MDVRP dataset
算例 | FMI | |||
---|---|---|---|---|
FCM | SCSC | K-means | 本文方法 | |
P01 | 0.578 9 | 0.572 5 | 0.578 9 | 0.678 3 |
P02 | 0.686 3 | 0.378 3 | 0.653 8 | 0.525 2 |
P03 | 0.565 5 | 0.465 4 | 0.646 0 | 0.737 1 |
P04 | 0.675 9 | 0.640 0 | 0.801 2 | 0.921 9 |
P05 | 0.518 9 | 0.226 2 | 0.494 1 | 0.769 8 |
P06 | 0.825 3 | 0.806 9 | 0.843 8 | 0.658 7 |
P07 | 0.501 7 | 0.541 3 | 0.501 7 | 0.583 1 |
P08 | 0.838 1 | 0.845 4 | 0.636 8 | 0.930 1 |
P09 | 0.690 2 | 0.515 0 | 0.711 1 | 0.670 2 |
P10 | 0.491 2 | 0.058 3 | 0.484 8 | 0.601 3 |
P11 | 0.551 1 | 0.337 4 | 0.562 1 | 0.764 3 |
P12 | 0.902 6 | 0.925 0 | 0.902 6 | 0.902 7 |
P13 | 0.902 6 | 0.925 0 | 0.902 6 | 0.902 7 |
P14 | 0.950 0 | 0.950 0 | 0.950 0 | 0.950 1 |
P23 | 0.752 5 | 0.100 0 | 0.734 8 | 0.761 0 |
Pr01 | 0.901 7 | 0.617 3 | 0.885 7 | 0.891 1 |
Pr02 | 0.671 6 | 0.711 5 | 0.619 7 | 0.633 9 |
Pr03 | 0.641 1 | 0.852 7 | 0.641 3 | 0.633 9 |
Pr04 | 0.786 4 | 0.906 7 | 0.773 5 | 0.815 6 |
Pr08 | 0.883 4 | 0.130 4 | 0.593 7 | 0.799 7 |
Pr09 | 0.420 4 | 0.491 5 | 0.517 8 | 0.606 7 |
算例 | VNTS | VNTS+FCM | VNTS+SCSC | VNTS+K‑means | VNTS+ 本文方法 |
---|---|---|---|---|---|
P01 | 617.77 | 613.27 | 639.93 | 669.43 | 596.28 |
P02 | 560.44 | 490.27 | 547.42 | 525.12 | 480.92 |
P03 | 810.18 | 677.65 | 706.99 | 848.63 | 666.73 |
P04 | 930.97 | 835.40 | 869.89 | 1 114.12 | 825.49 |
P05 | 945.04 | 843.86 | 831.75 | 946.39 | 824.74 |
P06 | 1 114.44 | 937.47 | 999.27 | 944.71 | 1 215.12 |
P07 | 1 229.57 | 994.31 | 941.05 | 976.28 | 960.56 |
P08 | 6 532.82 | 4 900.05 | 5 369.90 | 6 333.45 | 4 780.93 |
P09 | 6 511.97 | 5 292.26 | 4 424.95 | 4 733.89 | 5 836.72 |
P10 | 4 657.70 | 4 176.38 | 5 025.39 | 5 882.19 | 4 062.10 |
P11 | 6 188.19 | 5 176.19 | 4 048.94 | 4 507.12 | 4 114.79 |
P12 | 1 828.98 | 1 510.03 | 1 502.40 | 1 534.93 | 1 483.59 |
P13 | 1 821.88 | 1 559.92 | 1 520.24 | 1 569.45 | 1 511.34 |
P14 | 1 856.17 | 1 510.03 | 1 578.91 | 1 559.92 | 1 476.88 |
P23 | 6 983.64 | 6 805.78 | 6 945.38 | 6 995.21 | 6 805.78 |
Pr01 | 1 018.66 | 912.59 | 1 036.02 | 1 076.4 | 876.39 |
Pr02 | 1 795.43 | 1 559.34 | 1 565.68 | 1 542.31 | 1 559.34 |
Pr03 | 2 476.77 | 2 026.65 | 1 934.31 | 2 042.95 | 1 899.27 |
Pr04 | 3 121.45 | 2 524.92 | 2 534.97 | 2 662.12 | 2 524.92 |
Pr08 | 2 523.44 | 1 951.20 | 2 004.80 | 2 264.29 | 1 951.20 |
Pr09 | 3 699.00 | 3 615.03 | 2 461.17 | 3 031.45 | 2 801.55 |
Tab. 5 The shortest route lengths of different clustering methods combined with VNTS algorithm on MDVRP dataset
算例 | VNTS | VNTS+FCM | VNTS+SCSC | VNTS+K‑means | VNTS+ 本文方法 |
---|---|---|---|---|---|
P01 | 617.77 | 613.27 | 639.93 | 669.43 | 596.28 |
P02 | 560.44 | 490.27 | 547.42 | 525.12 | 480.92 |
P03 | 810.18 | 677.65 | 706.99 | 848.63 | 666.73 |
P04 | 930.97 | 835.40 | 869.89 | 1 114.12 | 825.49 |
P05 | 945.04 | 843.86 | 831.75 | 946.39 | 824.74 |
P06 | 1 114.44 | 937.47 | 999.27 | 944.71 | 1 215.12 |
P07 | 1 229.57 | 994.31 | 941.05 | 976.28 | 960.56 |
P08 | 6 532.82 | 4 900.05 | 5 369.90 | 6 333.45 | 4 780.93 |
P09 | 6 511.97 | 5 292.26 | 4 424.95 | 4 733.89 | 5 836.72 |
P10 | 4 657.70 | 4 176.38 | 5 025.39 | 5 882.19 | 4 062.10 |
P11 | 6 188.19 | 5 176.19 | 4 048.94 | 4 507.12 | 4 114.79 |
P12 | 1 828.98 | 1 510.03 | 1 502.40 | 1 534.93 | 1 483.59 |
P13 | 1 821.88 | 1 559.92 | 1 520.24 | 1 569.45 | 1 511.34 |
P14 | 1 856.17 | 1 510.03 | 1 578.91 | 1 559.92 | 1 476.88 |
P23 | 6 983.64 | 6 805.78 | 6 945.38 | 6 995.21 | 6 805.78 |
Pr01 | 1 018.66 | 912.59 | 1 036.02 | 1 076.4 | 876.39 |
Pr02 | 1 795.43 | 1 559.34 | 1 565.68 | 1 542.31 | 1 559.34 |
Pr03 | 2 476.77 | 2 026.65 | 1 934.31 | 2 042.95 | 1 899.27 |
Pr04 | 3 121.45 | 2 524.92 | 2 534.97 | 2 662.12 | 2 524.92 |
Pr08 | 2 523.44 | 1 951.20 | 2 004.80 | 2 264.29 | 1 951.20 |
Pr09 | 3 699.00 | 3 615.03 | 2 461.17 | 3 031.45 | 2 801.55 |
1 | DANTZIG G B, RAMSER J H. The truck dispatching problem[J]. Science Management, 1959, 6(1): 80-91. |
2 | GIBBS H, LIU Y, PEARSON C A B, et al. Changing travel patterns in China during the early stages of the COVID-19 pandemic[J]. Nature Communications, 2020, 11(1): No.5012. |
3 | LI J Y, DENG X Y, ZHAN Z H, et al. A multipopulation multiobjective ant colony system considering travel and prevention costs for vehicle routing in COVID-19-like epidemics[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25062-25076. |
4 | TILLMAN F A. The multiple terminal delivery problem with probabilistic demands[J]. Transportation Science, 1969, 3(3): 192-204. |
5 | MONTOYA-TORRES J R, FRANCO J L, ISAZA S N, et al. A literature review on the vehicle routing problem with multiple depots[J]. Computers and Industrial Engineering, 2015, 79: 115-129. |
6 | TAŞ D, GENDREAU M, DELLAERT N, et al. Vehicle routing with soft time windows and stochastic travel times: a column generation and branch-and-price solution approach[J]. European Journal of Operational Research, 2014, 236(3): 789-799. |
7 | DABIA S, ROPKE S, VAN WOENSEL T, et al. Branch and price for the time-dependent vehicle routing problem with time windows[J]. Transportation Science, 2013, 47(3): 380-396. |
8 | HERNANDEZ F, FEILLET D, GIROUDEAU R, et al. Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows[J]. European Journal of Operational Research, 2016, 249(2): 551-559. |
9 | MAK V, ERNST A T. New cutting-planes for the time-and/or precedence-constrained ATSP and directed VRP[J]. Mathematical Methods of Operations Research, 2007, 66(1): 69-98. |
10 | KALLEHAUGE B, LARSEN J, MADSEN O B G. Lagrangian duality applied to the vehicle routing problem with time windows[J]. Computers and Operations Research, 2006, 33(5): 1464-1487. |
11 | MAHMOUDI M, ZHOU X. Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: a dynamic programming approach based on state-space-time network representations[J]. Transportation Research Part B: Methodological, 2016, 89: 19-42. |
12 | PRABU U, RAVISASTHIRI P, SRIRAM R, et al. EODVGA: an enhanced ODV based genetic algorithm for multi-depot vehicle routing problem[J]. EAI Endorsed Transactions on Scalable Information Systems, 2019, 6(21): No.e8. |
13 | LI Y, SOLEIMANI H, ZOHAL M. An improved ant colony optimization algorithm for the multi-depot green vehicle routing problem with multiple objectives[J]. Journal of Cleaner Production, 2019, 227: 1161-1172. |
14 | STODOLA P, NOHEL J. Adaptive ant colony optimization with node clustering for the multi-depot vehicle routing problem[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(6): 1866-1880. |
15 | KACHITVICHYANUKUL V, SOMBUNTHAM P, KUNNAPAPDEELERT S. Two solution representations for solving multi-depot vehicle routing problem with multiple pickup and delivery requests via PSO[J]. Computers and Industrial Engineering, 2015, 89: 125-136. |
16 | DE OLIVEIRA F B, ENAYATIFAR R, SADAEI H J, et al. A cooperative coevolutionary algorithm for the multi-depot vehicle routing problem[J]. Expert Systems with Applications, 2016, 43: 117-130. |
17 | 彭熙舜,陆安江,贾明俊,等.利用Kmeans与蚁群算法的路径寻优方法[J].智能计算机与应用,2021,11(4):17-20. |
PENG X S, LU A J, JIA M J, et al. Path optimization method using Kmeans and ant colony algorithm[J]. Intelligent Computer and Applications, 2021, 11(4): 17-20. | |
18 | CALVET L, FERRER A, GOMES M I, et al. Combining statistical learning with metaheuristics for the multi-depot vehicle routing problem with market segmentation[J]. Computers and Industrial Engineering, 2016, 94: 93-104. |
19 | MAHMUD N, HAQUE M M. Solving multiple depot vehicle routing problem (MDVRP) using genetic algorithm [C]//Proceedings of the 2019 International Conference on Electrical, Computer and Communication Engineering. Piscataway: IEEE, 2019: 1-6. |
20 | SHALABY M A W, MOHAMMED A, KASSEM S. Supervised fuzzy c-means techniques to solve the capacitated vehicle routing problem[J]. The International Arab Journal of Information Technology, 2021, 18(3A): 452-463. |
21 | LV C, ZHANG C, LIAN K, et al. A two-echelon fuzzy clustering based heuristic for large-scale bike sharing repositioning problem[J]. Transportation Research Part B: Methodological, 2022, 160: 54-75. |
22 | ALLAHYARI S, SALARI M, VIGO D. A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem[J]. European Journal of Operational Research, 2015, 242(3): 756-768. |
23 | KUO Y, WANG C C. A variable neighborhood search for the multi-depot vehicle routing problem with loading cost[J]. Expert Systems with Applications, 2012, 39(8): 6949-6954. |
24 | WREN A, HOLLIDAY A. Computer scheduling of vehicles from one or more depots to a number of delivery points[J]. Journal of the Operational Research Society, 1972, 23(3): 333-344. |
25 | GILLETT B E, JOHNSON J G. Multi-terminal vehicle-dispatch algorithm[J]. Omega, 1976, 4(6): 711-718. |
26 | RENAUD J, LAPORTE G, BOCTOR F F. A tabu search heuristic for the multi-depot vehicle routing problem[J]. Computers and Operations Research, 1996, 23(3): 229-235. |
27 | CREVIER B, CORDEAU J F, LAPORTE G. The multi-depot vehicle routing problem with inter-depot routes[J]. European Journal of Operational Research, 2007, 176(2): 756-773. |
28 | HO W, HO G T S, JI P, et al. A hybrid genetic algorithm for the multi-depot vehicle routing problem[J]. Engineering Applications of Artificial Intelligence, 2008, 21(4): 548-557. |
29 | SUREKHA P, SUMATHI S. Application of particle swarm optimization for solving multi-depot vehicle routing problems[J]. International Journal of Artificial Intelligent Systems and Machine Learning, 2011, 3(11): 677-686. |
30 | STODOLA P. Hybrid ant colony optimization algorithm applied to the multi-depot vehicle routing problem[J]. Natural Computing, 2020, 19(2): 463-475. |
31 | WANG X, CHOI T M, LIU H, et al. Novel ant colony optimization methods for simplifying solution construction in vehicle routing problems[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(11): 3132-3141. |
32 | GU Z, ZHU Y, WANG Y, et al. Applying artificial bee colony algorithm to the multidepot vehicle routing problem[J]. Software: Practice and Experience, 2022, 52(3): 756-771. |
33 | MOSTAFA N, ELTAWIL A. Solving the heterogeneous capacitated vehicle routing problem using K-means clustering and valid inequalities [C]// Proceedings of the 2017 International Conference on Industrial Engineering and Operations Management. Southfield, MI: IEOM Society International, 2017: 2239-2249. |
34 | SINGANAMALA P, REDDY K D, VENKATARAMAIAH P. Solution to a multi depot vehicle routing problem using K-means algorithm, Clarke and Wright algorithm and ant colony optimization[J]. International Journal of Applied Engineering Research, 2018, 13(21): 15236-15246. |
35 | ZHU J. Solving capacitated vehicle routing problem by an improved genetic algorithm with fuzzy C-means clustering[J]. Scientific Programming, 2022, 2022: No.8514660. |
36 | SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. |
37 | BAI L, LIANG J, ZHAO Y. Self-constrained spectral clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 5126-5138. |
38 | MOLINA J C, EGUIA I, RACERO J. Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study[J]. TOP, 2019, 27(2): 253-287. |
39 | LI J, LI T, YU Y, et al. Discrete firefly algorithm with compound neighborhoods for asymmetric multi-depot vehicle routing problem in the maintenance of farm machinery[J]. Applied Soft Computing, 2019, 81: No.105460. |
40 | SADATI M E H, ÇATAY B, AKSEN D. An efficient variable neighborhood search with tabu shaking for a class of multi-depot vehicle routing problems[J]. Computers and Operations Research, 2021, 133: No.105269. |
41 | PISINGER D, ROPKE S. A general heuristic for vehicle routing problems[J]. Computers and Operations Research, 2007, 34(8): 2403-2435. |
42 | FOWLKES E B, MALLOWS C L. A method for comparing two hierarchical clusterings[J]. Journal of the American Statistical Association, 1983, 78(383): 553-569. |
[1] | Yu DING, Hanlin ZHANG, Rong LUO, Hua MENG. Fuzzy clustering algorithm based on belief subcluster cutting [J]. Journal of Computer Applications, 2024, 44(4): 1128-1138. |
[2] | Jianqiang LI, Zhou HE. Hybrid NSGA-Ⅱ for vehicle routing problem with multi-trip pickup and delivery [J]. Journal of Computer Applications, 2024, 44(4): 1187-1194. |
[3] | Xinming GUO, Rui LIU, Fei XIE, Deyu LIN. β-QoM target-barrier coverage construction algorithm for wireless visual sensor network [J]. Journal of Computer Applications, 2023, 43(9): 2877-2884. |
[4] | Jian LIN, Jingxuan YE, Wenwen LIU, Xiaowen SHAO. Multimodal differential evolution algorithm for solving capacitated vehicle routing problem [J]. Journal of Computer Applications, 2023, 43(7): 2248-2254. |
[5] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[6] | Zhifeng MA, Junyang YU, Longge WANG. Diversity represented deep subspace clustering algorithm [J]. Journal of Computer Applications, 2023, 43(2): 407-412. |
[7] | Wenbo LI, Bo LIU, Lingling TAO, Fen LUO, Hang ZHANG. Deep spectral clustering algorithm with L1 regularization [J]. Journal of Computer Applications, 2023, 43(12): 3662-3667. |
[8] | Zhihao XIAO, Zhihua HU, Lin ZHU. Hybrid adaptive large neighborhood search algorithm for solving time-dependent vehicle routing problem in cold chain logistics [J]. Journal of Computer Applications, 2022, 42(9): 2926-2935. |
[9] | Xinming ZHANG, Shaochen WEN, Shangwang LIU. Differential disturbed heap-based optimizer [J]. Journal of Computer Applications, 2022, 42(8): 2519-2527. |
[10] | Xingjin LAI, Zhiyuan ZHENG, Xiaoyan DU, Sha XU, Xiaojun YANG. Hyperspectral clustering algorithm by double dimension-reduction based on super-pixel and anchor graph [J]. Journal of Computer Applications, 2022, 42(7): 2088-2093. |
[11] | Jie YANG, Mingyang ZHANG, Xiaobin RUI, Zhixiao WANG. Influence maximization algorithm based on node coverage and structural hole [J]. Journal of Computer Applications, 2022, 42(4): 1155-1161. |
[12] | Qi ZHANG, Bochuan ZHENG, Zheng ZHANG, Huanhuan ZHOU. Sparse subspace clustering method based on random blocking [J]. Journal of Computer Applications, 2022, 42(4): 1148-1154. |
[13] | Yu XU, Yunyou ZHU, Xiao LIU, Yuting DENG, Yong LIAO. Multi-objective routing optimization of electric power material distribution based on deep reinforcement learning [J]. Journal of Computer Applications, 2022, 42(10): 3252-3258. |
[14] | Zhishuo LIU, Ruosi LIU, Zhe CHEN. Cold chain electric vehicle routing problem based on hybrid ant colony optimization [J]. Journal of Computer Applications, 2022, 42(10): 3244-3251. |
[15] | ZHU Cheng, ZHAO Xiaoqi, ZHAO Liping, JIAO Yuhong, ZHU Yafei, CHENG Jianying, ZHOU Wei, TAN Ying. Classification of functional magnetic resonance imaging data based on semi-supervised feature selection by spectral clustering [J]. Journal of Computer Applications, 2021, 41(8): 2288-2293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||