Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2369-2377.DOI: 10.11772/j.issn.1001-9081.2024070968
• Multimedia computing and computer simulation • Previous Articles Next Articles
Jin XIE1, Surong CHU1, Yan QIANG1,2(), Juanjuan ZHAO1,3, Hua ZHANG4, Yong GAO5
Received:
2024-07-09
Revised:
2024-09-25
Accepted:
2024-09-29
Online:
2025-07-10
Published:
2025-07-10
Contact:
Yan QIANG
About author:
XIE Jin, born in 1999, M. S. candidate. His research interests include computer vision, image processing.Supported by:
谢劲1, 褚苏荣1, 强彦1,2(), 赵涓涓1,3, 张华4, 高勇5
通讯作者:
强彦
作者简介:
谢劲(1999—),男,江苏如皋人,硕士研究生,主要研究方向:计算机视觉、图像处理基金资助:
CLC Number:
Jin XIE, Surong CHU, Yan QIANG, Juanjuan ZHAO, Hua ZHANG, Yong GAO. Dual-branch distribution consistency contrastive learning model for hard negative sample identification in chest X-rays[J]. Journal of Computer Applications, 2025, 45(7): 2369-2377.
谢劲, 褚苏荣, 强彦, 赵涓涓, 张华, 高勇. 用于胸片中硬负样本识别的双支分布一致性对比学习模型[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2369-2377.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024070968
方法 | 不同数据集上的准确率 | |||
---|---|---|---|---|
pneumoconiosis | NIH | Pneumonia | COVID-19 | |
Supervised[ | 77.68 | 84.98 | 98.75 | 97.62 |
MoCo v2[ | 67.18 | 66.42 | 89.67 | 85.49 |
SimCLR[ | 64.82 | 65.48 | 84.27 | 82.61 |
ReSSL[ | 68.37 | 66.59 | 88.62 | 86.43 |
BYOL[ | 66.93 | 66.35 | 83.59 | 85.22 |
CPC v2[ | 67.86 | 63.51 | 87.42 | 86.32 |
TCL | 71.31 | 68.47 | 90.26 | 89.49 |
Tab. 1 Comparison of classification accuracy of different methods
方法 | 不同数据集上的准确率 | |||
---|---|---|---|---|
pneumoconiosis | NIH | Pneumonia | COVID-19 | |
Supervised[ | 77.68 | 84.98 | 98.75 | 97.62 |
MoCo v2[ | 67.18 | 66.42 | 89.67 | 85.49 |
SimCLR[ | 64.82 | 65.48 | 84.27 | 82.61 |
ReSSL[ | 68.37 | 66.59 | 88.62 | 86.43 |
BYOL[ | 66.93 | 66.35 | 83.59 | 85.22 |
CPC v2[ | 67.86 | 63.51 | 87.42 | 86.32 |
TCL | 71.31 | 68.47 | 90.26 | 89.49 |
源域 | 标签比率 | 目标域 | 方法 | 准确率 |
---|---|---|---|---|
NIH | 5 | COVID-19 | MoCo v2 | 66.47 |
TCL | 69.20 | |||
Pneumonia | MoCo v2 | 63.29 | ||
TCL | 67.71 | |||
NIH | 20 | COVID-19 | MoCo v2 | 75.91 |
TCL | 76.38 | |||
Pneumonia | MoCo v2 | 69.83 | ||
TCL | 72.47 | |||
NIH | 50 | COVID-19 | MoCo v2 | 79.28 |
TCL | 85.95 | |||
Pneumonia | MoCo v2 | 81.42 | ||
TCL | 83.65 |
Tab. 2 Transfer learning results
源域 | 标签比率 | 目标域 | 方法 | 准确率 |
---|---|---|---|---|
NIH | 5 | COVID-19 | MoCo v2 | 66.47 |
TCL | 69.20 | |||
Pneumonia | MoCo v2 | 63.29 | ||
TCL | 67.71 | |||
NIH | 20 | COVID-19 | MoCo v2 | 75.91 |
TCL | 76.38 | |||
Pneumonia | MoCo v2 | 69.83 | ||
TCL | 72.47 | |||
NIH | 50 | COVID-19 | MoCo v2 | 79.28 |
TCL | 85.95 | |||
Pneumonia | MoCo v2 | 81.42 | ||
TCL | 83.65 |
实验 | 强数据增强 | 弱数据增强 | 准确率/% | ||||
---|---|---|---|---|---|---|---|
Inpainting | 随机裁剪 | Outpainting | 高斯模糊 | 水平翻转 | 随机旋转 | ||
实验1 | √ | √ | √ | 69.75 | |||
实验2 | √ | √ | √ | √ | 65.62 | ||
实验3 | √ | √ | √ | 67.27 | |||
实验4 | √ | √ | √ | √ | 71.31 | ||
实验5 | √ | √ | √ | √ | 67.46 | ||
实验6 | √ | √ | √ | 67.92 |
Tab. 3 Results of different data augmentation method combinations
实验 | 强数据增强 | 弱数据增强 | 准确率/% | ||||
---|---|---|---|---|---|---|---|
Inpainting | 随机裁剪 | Outpainting | 高斯模糊 | 水平翻转 | 随机旋转 | ||
实验1 | √ | √ | √ | 69.75 | |||
实验2 | √ | √ | √ | √ | 65.62 | ||
实验3 | √ | √ | √ | 67.27 | |||
实验4 | √ | √ | √ | √ | 71.31 | ||
实验5 | √ | √ | √ | √ | 67.46 | ||
实验6 | √ | √ | √ | 67.92 |
方法 | 不同数据集上的准确率 | |||
---|---|---|---|---|
pneumoconiosis | NIH | Pneumonia | COVID-19 | |
P.S | 61.59 | 60.75 | 81.38 | 83.29 |
T | 60.85 | 57.64 | 76.29 | 72.37 |
CL P.S+T | 61.61 64.89 | 60.53 61.72 | 82.69 83.65 | 81.62 84.73 |
T+CL | 62.57 | 63.24 | 84.58 | 83.26 |
P.S+CL | 62.14 | 61.82 | 84.92 | 84.41 |
Full(w/o MIL) | 64.94 | 63.73 | 85.37 | 87.29 |
Full(w/o AML) | 66.32 | 66.92 | 86.49 | 86.52 |
Full model | 71.31 | 68.47 | 90.26 | 89.49 |
Tab. 4 Ablation experimental results
方法 | 不同数据集上的准确率 | |||
---|---|---|---|---|
pneumoconiosis | NIH | Pneumonia | COVID-19 | |
P.S | 61.59 | 60.75 | 81.38 | 83.29 |
T | 60.85 | 57.64 | 76.29 | 72.37 |
CL P.S+T | 61.61 64.89 | 60.53 61.72 | 82.69 83.65 | 81.62 84.73 |
T+CL | 62.57 | 63.24 | 84.58 | 83.26 |
P.S+CL | 62.14 | 61.82 | 84.92 | 84.41 |
Full(w/o MIL) | 64.94 | 63.73 | 85.37 | 87.29 |
Full(w/o AML) | 66.32 | 66.92 | 86.49 | 86.52 |
Full model | 71.31 | 68.47 | 90.26 | 89.49 |
方法 | 准确率 |
---|---|
TCL(w/o P.S) | 77.16 |
TCL(w/o T) | 71.35 |
TCL(w/o CL) | 74.61 |
TCL | 81.27 |
Tab. 5 Influence of different modules on transferability
方法 | 准确率 |
---|---|
TCL(w/o P.S) | 77.16 |
TCL(w/o T) | 71.35 |
TCL(w/o CL) | 74.61 |
TCL | 81.27 |
准确率/% | 准确率/% | 准确率/% | |||
---|---|---|---|---|---|
0.0 | 67.76 | 0.4 | 69.86 | 0.8 | 69.73 |
0.1 | 68.36 | 0.5 | 70.35 | 0.9 | 69.79 |
0.2 | 68.72 | 0.6 | 71.31 | 1.0 | 68.61 |
0.3 | 69.41 | 0.7 | 70.49 |
Tab. 6 Hyperparameter α influence on model performance
准确率/% | 准确率/% | 准确率/% | |||
---|---|---|---|---|---|
0.0 | 67.76 | 0.4 | 69.86 | 0.8 | 69.73 |
0.1 | 68.36 | 0.5 | 70.35 | 0.9 | 69.79 |
0.2 | 68.72 | 0.6 | 71.31 | 1.0 | 68.61 |
0.3 | 69.41 | 0.7 | 70.49 |
[1] | ORAÑO J F V, ORAÑO-MAAGHOP J F V, MARAVILLAS E A. CXR-based lung disease classification using convolutional neural network [C]// Proceedings of the IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management. Piscataway: IEEE, 2022: 1-5. |
[2] | RATNATUNGA C N, LUTZKY V P, KUPZ A, et al. The rise of non-tuberculosis mycobacterial lung disease [J]. Frontiers in Immunology, 2020, 11: No.303. |
[3] | QUEVEDO S, DOMÍNGEZ F, PELAEZ E. Detecting multi thoracic diseases in chest x-ray images using deep learning techniques [C]// Proceedings of the IEEE 13th International Conference on Pattern Recognition Systems. Piscataway: IEEE, 2023: 1-7. |
[4] | ASAITHAMBI A, THAMILARASI V. Classification of lung chest X-ray images using deep learning with efficient optimizers [C]// Proceedings of the IEEE 13th Annual Computing and Communication Workshop and Conference. Piscataway: IEEE, 2023: 465-469. |
[5] | YANG F, LU P X, DENG M, et al. Annotations of lung abnormalities in the Shenzhen chest X-ray dataset for computer-aided screening of pulmonary diseases [J]. Data, 2022, 7(7): No.95. |
[6] | LIU C, WEN J, LUO X, et al. DICNet: deep instance-level contrastive network for double incomplete multi-view multi-label classification [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 8807-8815. |
[7] | HUANG Z, ZHANG J, SHAN H. Twin contrastive learning with noisy labels [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 11661-11670. |
[8] | LIAO H, WANG Q, ZHAO S, et al. Domain consensual contrastive learning for few-shot universal domain adaptation [J]. Applied Intelligence, 2023, 53(22): 27191-27206. |
[9] | 韩滕跃,牛少彰,张文.基于对比学习的多模态序列推荐算法[J].计算机应用,2022, 42(6): 1683-1688. |
HAN T Y, NIU S Z, ZHANG W. Multimodal sequential recommendation algorithm based on contrastive learning [J]. Journal of Computer Applications, 2022, 42(6): 1683-1688. | |
[10] | JAISWAL A, BABU A R, ZADEH M Z, et al. A survey on contrastive self-supervised learning [J]. Technologies, 2020, 9(1): No.2. |
[11] | LIU X, ZHANG F, HOU Z, et al. Self-supervised learning: generative or contrastive [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 857-876. |
[12] | HAN Y, CHEN C, TEWFIK A, et al. Knowledge-augmented contrastive learning for abnormality classification and localization in chest X-rays with radiomics using a feedback loop [C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1789-1798. |
[13] | WEI Z, PARK S, KIM J. A triplet contrast learning of global and local representations for unannotated medical images [C]// Proceedings of the 2022 International Workshop on PRedictive Intelligence in MEdicine, LNCS 13564. Cham: Springer, 2022: 181-190. |
[14] | ZENG D, KHEIR J N, ZENG P, et al. Contrastive learning with temporal correlated medical images: a case study using lung segmentation in chest X-rays (invited paper) [C]// Proceedings of the 2021 IEEE/ACM International Conference on Computer Aided Design. Piscataway: IEEE, 2021: 1-7. |
[15] | WU H, XIAO F, LIANG C. Dual contrastive learning with anatomical auxiliary supervision for few-shot medical image segmentation [C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13680. Cham: Springer, 2022: 417-434. |
[16] | ZHANG Y, JIANG H, MIURA Y, et al. Contrastive learning of medical visual representations from paired images and text [C]// Proceedings of the 7th Machine Learning for Healthcare Conference. New York: JMLR.org, 2022: 2-25. |
[17] | HE Y, YANG G, GE R, et al. Geometric visual similarity learning in 3D medical image self-supervised pre-training [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9538-9547. |
[18] | WEI X, NIU X, ZHANG X, et al. Deep pneumonia: attention-based contrastive learning for class-imbalanced pneumonia lesion recognition in chest X-rays [C]// Proceedings of the 2022 IEEE International Conference on Big Data. Piscataway: IEEE, 2022: 5361-5369. |
[19] | 刘兆伟,方艳红,郑明宇,等.基于注意力机制与多任务的肺部疾病诊断方法[J].计算机工程,2025, 51(1): 332-342. |
LIU Z W, FANG Y H, ZHENG M Y, et al. Lung disease diagnosis method based on attention mechanism and multi-tasking [J]. Computer Engineering, 2025, 51(1): 332-342. | |
[20] | ROBINSON J, CHUANG C Y, SRA S, et al. Contrastive learning with hard negative samples [EB/OL]. [2024-01-24]. . |
[21] | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1597-1607. |
[22] | HE K, FAN H, WU Y, et al. Momentum contrast for unsupervised visual representation learning [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9726-9735. |
[23] | GRILL J B, STRUB F, ALTCHÉ F, et al. Bootstrap your own latent — a new approach to self-supervised learning [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21271-21284. |
[24] | ZHENG M, YOU S, WANG F, et al. ReSSL: relational self-supervised learning with weak augmentation [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 2543-2555. |
[25] | CUI W, BAI L, YANG X, et al. A new contrastive learning framework for reducing the effect of hard negatives [J]. Knowledge-Based Systems, 2023, 260: No.110121. |
[26] | TU W, ZHOU S, LIU X, et al. Hierarchically contrastive hard sample mining for graph self-supervised pretraining [J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 16748-16761. |
[27] | KALANTIDIS Y, SARIYILDIZ M B, PION N, et al. Hard negative mixing for contrastive learning [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21798-21809. |
[28] | LI J, ZHAO G, TAO Y, et al. Multi-task contrastive learning for automatic CT and X-ray diagnosis of COVID-19 [J]. Pattern Recognition, 2021, 114: No.107848. |
[29] | LI D. Attention-enhanced architecture for improved pneumonia detection in chest X-ray images [J]. BMC Medical Imaging, 2024, 24: No.6. |
[30] | PACKHÄUSER K, FOLLE L, THAMM F, et al. Generation of anonymous chest radiographs using latent diffusion models for training thoracic abnormality classification systems [C]// Proceedings of the IEEE 20th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2023: 1-5. |
[31] | WANG X, PENG Y, LU L, et al. ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 3462-3471. |
[32] | KERMANY D S, GOLDBAUM M, CAI W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning [J]. Cell, 2018, 172(5): 1122-1131.e9. |
[33] | CHOWDHURY M E H, RAHMAN T, KHANDAKAR A, et al. Can AI help in screening viral and COVID-19 pneumonia? [J]. IEEE Access, 2020, 8: 132665-132676. |
[34] | HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |
[35] | HÉNAFF O J, SRINIVAS A, DE FAUW J, et al. Data-efficient image recognition with contrastive predictive coding [C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 4182-4192. |
[1] | Wenjing YAN, Ruidong WANG, Min ZUO, Qingchuan ZHANG. Recipe recommendation model based on hierarchical learning of flavor embedding heterogeneous graph [J]. Journal of Computer Applications, 2025, 45(6): 1869-1878. |
[2] | Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling [J]. Journal of Computer Applications, 2025, 45(4): 1053-1060. |
[3] | Jiong WANG, Taotao TANG, Caiyan JIA. PAGCL: positive augmentation graph contrastive learning recommendation method without negative sampling [J]. Journal of Computer Applications, 2024, 44(5): 1485-1492. |
[4] | WANG Lin, ZHANG Hehe. Application of Faster R-CNN model in vehicle detection [J]. Journal of Computer Applications, 2018, 38(3): 666-670. |
[5] | Mo ZHAO. Transfer function design based on principle of stripping surface layer [J]. Journal of Computer Applications, 2008, 28(8): 2059-2062. |
[6] | . Automatic medical image segmentation based on gradient vector flow [J]. Journal of Computer Applications, 2007, 27(1): 149-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||