Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (4): 1053-1060.DOI: 10.11772/j.issn.1001-9081.2024040419
• Artificial intelligence • Previous Articles Next Articles
Renjie TIAN1, Mingli JING1(), Long JIAO2, Fei WANG1
Received:
2024-04-10
Revised:
2024-07-15
Accepted:
2024-07-18
Online:
2025-04-08
Published:
2025-04-10
Contact:
Mingli JING
About author:
TIAN Renjie, born in 2000, M. S. candidate. His research interests include recommendation system.Supported by:
通讯作者:
景明利
作者简介:
田仁杰(2000—),男,陕西渭南人,硕士研究生,主要研究方向:推荐系统基金资助:
CLC Number:
Renjie TIAN, Mingli JING, Long JIAO, Fei WANG. Recommendation algorithm of graph contrastive learning based on hybrid negative sampling[J]. Journal of Computer Applications, 2025, 45(4): 1053-1060.
田仁杰, 景明利, 焦龙, 王飞. 基于混合负采样的图对比学习推荐算法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1053-1060.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024040419
数据集 | 用户数 | 项目数 | 交互数 | 密集度/% |
---|---|---|---|---|
Douban-Book | 13 024 | 22 347 | 792 062 | 0.272 |
Yelp2018 | 31 668 | 38 048 | 1 561 406 | 0.130 |
Amazon-Kindle | 138 333 | 98 572 | 1 909 965 | 0.014 |
Tab. 1 Statistical information of three datasets
数据集 | 用户数 | 项目数 | 交互数 | 密集度/% |
---|---|---|---|---|
Douban-Book | 13 024 | 22 347 | 792 062 | 0.272 |
Yelp2018 | 31 668 | 38 048 | 1 561 406 | 0.130 |
Amazon-Kindle | 138 333 | 98 572 | 1 909 965 | 0.014 |
算法 | Douban-Book | Yelp2018 | Amazon-Kindle | |||
---|---|---|---|---|---|---|
R@20 | N@20 | R@20 | N@20 | R@20 | N@20 | |
LightGCN | 0.150 1 | 0.128 2 | 0.063 9 | 0.052 5 | 0.205 7 | 0.131 5 |
SGL | 0.173 2 | 0.155 1 | 0.067 5 | 0.055 5 | 0.210 5 | 0.135 1 |
DNN+SSL | 0.136 6 | 0.114 8 | 0.048 3 | 0.038 2 | 0.152 0 | 0.098 9 |
BUIR | 0.112 7 | 0.089 3 | 0.048 7 | 0.040 4 | 0.092 2 | 0.052 8 |
MSGCL | 0.176 3 | 0.158 0 | 0.068 8 | 0.055 8 | 0.210 1 | 0.128 3 |
MixGCF | 0.173 1 | 0.155 2 | 0.071 3 | 0.058 4 | 0.212 8 | 0.132 7 |
SimGCL | 0.177 1 | 0.158 1 | 0.210 2 | 0.136 5 | ||
AdaGCL | 0.071 5 | 0.059 4 | ||||
HSGCL | 0.184 1 (+23%) | 0.169 3 (+32%) | 0.071 9 (+13%) | 0.059 9 (+14%) | 0.219 5 (+7%) | 0.137 6 (+5%) |
Tab. 2 Overall performance comparison of different algorithms
算法 | Douban-Book | Yelp2018 | Amazon-Kindle | |||
---|---|---|---|---|---|---|
R@20 | N@20 | R@20 | N@20 | R@20 | N@20 | |
LightGCN | 0.150 1 | 0.128 2 | 0.063 9 | 0.052 5 | 0.205 7 | 0.131 5 |
SGL | 0.173 2 | 0.155 1 | 0.067 5 | 0.055 5 | 0.210 5 | 0.135 1 |
DNN+SSL | 0.136 6 | 0.114 8 | 0.048 3 | 0.038 2 | 0.152 0 | 0.098 9 |
BUIR | 0.112 7 | 0.089 3 | 0.048 7 | 0.040 4 | 0.092 2 | 0.052 8 |
MSGCL | 0.176 3 | 0.158 0 | 0.068 8 | 0.055 8 | 0.210 1 | 0.128 3 |
MixGCF | 0.173 1 | 0.155 2 | 0.071 3 | 0.058 4 | 0.212 8 | 0.132 7 |
SimGCL | 0.177 1 | 0.158 1 | 0.210 2 | 0.136 5 | ||
AdaGCL | 0.071 5 | 0.059 4 | ||||
HSGCL | 0.184 1 (+23%) | 0.169 3 (+32%) | 0.071 9 (+13%) | 0.059 9 (+14%) | 0.219 5 (+7%) | 0.137 6 (+5%) |
变体 | Douban-Book | Yelp2018 | Amazon-Kindle | |||
---|---|---|---|---|---|---|
R@20 | N@20 | R@20 | N@20 | R@20 | N@20 | |
HSGCLa | 0.162 2 | 0.147 5 | 0.059 8 | 0.049 5 | 0.129 2 | 0.081 0 |
HSGCLp | 0.182 1 | 0.167 4 | 0.070 2 | 0.058 2 | 0.216 3 | 0.135 9 |
HSGCLg | 0.183 9 | 0.169 0 | 0.071 2 | 0.058 7 | 0.218 2 | 0.137 1 |
Tab. 3 Performance comparison of different noise patterns
变体 | Douban-Book | Yelp2018 | Amazon-Kindle | |||
---|---|---|---|---|---|---|
R@20 | N@20 | R@20 | N@20 | R@20 | N@20 | |
HSGCLa | 0.162 2 | 0.147 5 | 0.059 8 | 0.049 5 | 0.129 2 | 0.081 0 |
HSGCLp | 0.182 1 | 0.167 4 | 0.070 2 | 0.058 2 | 0.216 3 | 0.135 9 |
HSGCLg | 0.183 9 | 0.169 0 | 0.071 2 | 0.058 7 | 0.218 2 | 0.137 1 |
变体 | Douban-Book | Yelp2018 | Amazon-Kindle | |||
---|---|---|---|---|---|---|
R@20 | N@20 | R@20 | N@20 | R@20 | N@20 | |
HSGCL/m | 0.173 2 | 0.150 0 | 0.067 0 | 0.055 2 | 0.210 0 | 0.132 0 |
HSGCL/d | 0.175 0 | 0.152 4 | 0.067 9 | 0.055 7 | 0.213 0 | 0.133 4 |
HSGCL/n | 0.176 9 | 0.155 8 | 0.068 6 | 0.056 3 | 0.215 2 | 0.134 8 |
Tab. 4 Ablation experimental results of key modules in HSGCL
变体 | Douban-Book | Yelp2018 | Amazon-Kindle | |||
---|---|---|---|---|---|---|
R@20 | N@20 | R@20 | N@20 | R@20 | N@20 | |
HSGCL/m | 0.173 2 | 0.150 0 | 0.067 0 | 0.055 2 | 0.210 0 | 0.132 0 |
HSGCL/d | 0.175 0 | 0.152 4 | 0.067 9 | 0.055 7 | 0.213 0 | 0.133 4 |
HSGCL/n | 0.176 9 | 0.155 8 | 0.068 6 | 0.056 3 | 0.215 2 | 0.134 8 |
1 | ZHANG S, TONG H, XU J, et al. Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6: No.11. |
2 | 于蒙,何文涛,周绪川,等. 推荐系统综述[J]. 计算机应用, 2022, 42(6): 1898-1913. |
YU M, HE W T, ZHOU X C, et al. Review of recommendation system[J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. | |
3 | 孙轩宇,史艳翠. 融合项目影响力的图神经网络会话推荐模型[J]. 计算机应用, 2023, 43(12): 3689-3696. |
SUN X Y, SHI Y C. Session-based recommendation model by graph neural network fused with item influence[J]. Journal of Computer Applications, 2023, 43(12): 3689-3696. | |
4 | 潘润超,虞启山,熊泓霏,等. 基于深度图神经网络的协同推荐算法[J]. 计算机应用, 2023, 43(9): 2741-2746. |
PAN R C, YU Q S, XIONG H F, et al. Collaborative recommendation algorithm based on deep graph neural network[J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. | |
5 | WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. |
6 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. |
7 | LIU Z, MA Y, OUYANG Y, et al. Contrastive learning for recommender system[EB/OL]. [2024-04-01].. |
8 | YIN Y, WANG Q, HUANG S, et al. AutoGCL: automated graph contrastive learning via learnable view generators[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 8892-8900. |
9 | 韩滕跃,牛少彰,张文. 基于对比学习的多模态序列推荐算法[J]. 计算机应用, 2022, 42(6): 1683-1688. |
HAN T Y, NIU S Z, ZHANG W. Multimodal sequential recommendation algorithm based on contrastive learning[J]. Journal of Computer Applications, 2022, 42(6): 1683-1688. | |
10 | SHEN X, SUN D, PAN S, et al. Neighbor contrastive learning on learnable graph augmentation[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 9782-9791. |
11 | ZHAO Q, WU Z, ZHANG Z, et al. Long-tail augmented graph contrastive learning for recommendation[C]// Proceedings of the 2023 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 14172. Cham: Springer, 2023: 387-403. |
12 | LIANG K, LIU Y, ZHOU S, et al. Knowledge graph contrastive learning based on relation-symmetrical structure[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 36(1): 226-238. |
13 | CHEN M, HUANG C, XIA L, et al. Heterogeneous graph contrastive learning for recommendation[C]// Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 544-552. |
14 | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 726-735. |
15 | CAI X, HUANG C, XIA L, et al. LightGCL: simple yet effective graph contrastive learning for recommendation[EB/OL]. [2024-04-01].. |
16 | YU J, YIN H, XIA X, et al. Are graph augmentations necessary? simple graph contrastive learning for recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 1294-1303. |
17 | YU J, XIA X, CHEN T, et al. XSimGCL: towards extremely simple graph contrastive learning for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(2): 913-926. |
18 | HUANG T, DONG Y, DING M, et al. MixGCF: an improved training method for graph neural network-based recommender systems[C]// Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 665-674. |
19 | LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning[C]// Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2320-2329. |
20 | JIANG Y, HUANG C, HUANG L. Adaptive graph contrastive learning for recommendation[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 4252-4261. |
21 | ZHOU K, WANG H, ZHAO W X, et al. S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization[C]// Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1893-1902. |
22 | WEI Y, WANG X, LI Q, et al. Contrastive learning for cold-start recommendation[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 5382-5390. |
23 | QIU R, HUANG Z, YIN H, et al. Contrastive learning for representation degeneration problem in sequential recommendation[C]// Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 813-823. |
24 | YOU Y, CHEN T, SUI Y, et al. Graph contrastive learning with augmentations[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 5812-5823. |
25 | 范伟,周魏,文俊浩. 基于异构图的双通道交叉自适应对比学习推荐[J]. 电子学报, 2023, 51(7):1929-1938. |
FAN W, ZHOU W, WEN J H. Recommendation based on heterogeneous graph using dual channel cross-adaptive contrastive learning[J]. Acta Electronica Sinica, 2023, 51(7): 1929-1938. | |
26 | YANG Z, DING M, ZHOU C, et al. Understanding negative sampling in graph representation learning[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1666-1676. |
27 | 黄河源,慕彩红,方云飞,等. 使用图负采样的图卷积神经网络推荐算法[J]. 西安电子科技大学学报, 2024, 51(1):86-99. |
HUANG H Y, MU C H, FANG Y F, et al. Graph convolution neural network for recommendation using graph negative sampling[J]. Journal of Xidian University, 2024, 51(1):86-99. | |
28 | KALANTIDIS Y, SARIYILDIZ M B, PION N, et al. Hard negative mixing for contrastive learning[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 21798-21809. |
29 | ZHANG H, CISSE M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[EB/OL]. [2024-04-01].. |
30 | ZHANG W, CHEN T, WANG J, et al. Optimizing top-N collaborative filtering via dynamic negative item sampling[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2013: 785-788. |
31 | GUTMANN M, HYVÄRINEN A. Noise-contrastive estimation: a new estimation principle for unnormalized statistical models[C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2010: 297-304. |
32 | YAO T, YI X, CHENG D Z, et al. Self-supervised learning for large-scale item recommendations[C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 4321-4330. |
33 | LEE D, KANG S, JU H, et al. Bootstrapping user and item representations for one-class collaborative filtering[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 317-326. |
34 | 袁琮淇,刘渊,刘静文. 基于混合采样的图对比学习推荐算法[J]. 计算机应用研究, 2023, 40(5): 1346-1351. |
YUAN C Q, LIU Y, LIU J W. Graph contrastive learning recommendation algorithm based on mixed sampling[J]. Application Research of Computers, 2023, 40(5): 1346-1351. |
[1] | Cong WANG, Yancui SHI. Group recommendation model by graph neural network based on multi-perspective learning [J]. Journal of Computer Applications, 2025, 45(4): 1205-1212. |
[2] | Lan YOU, Yuang ZHANG, Yuan LIU, Zhijun CHEN, Wei WANG, Xing ZENG, Zhangwei HE. Developer recommendation for open-source projects based on collaborative contribution network [J]. Journal of Computer Applications, 2025, 45(4): 1213-1222. |
[3] | Haitao SUN, Jiayu LIN, Zuhong LIANG, Jie GUO. Data augmentation technique incorporating label confusion for Chinese text classification [J]. Journal of Computer Applications, 2025, 45(4): 1113-1119. |
[4] | Weichao DANG, Xinyu WEN, Gaimei GAO, Chunxia LIU. Multi-view and multi-scale contrastive learning for graph collaborative filtering [J]. Journal of Computer Applications, 2025, 45(4): 1061-1068. |
[5] | Chenwei SUN, Junli HOU, Xianggen LIU, Jiancheng LYU. Large language model prompt generation method for engineering drawing understanding [J]. Journal of Computer Applications, 2025, 45(3): 801-807. |
[6] | Kun FU, Shicong YING, Tingting ZHENG, Jiajie QU, Jingyuan CUI, Jianwei LI. Graph data augmentation method for few-shot node classification [J]. Journal of Computer Applications, 2025, 45(2): 392-402. |
[7] | Handa MA, Yadong WU. Multi-domain spatiotemporal hierarchical graph neural network for air quality prediction [J]. Journal of Computer Applications, 2025, 45(2): 444-452. |
[8] | Qijian CAI, Wei TAN. Semantic graph enhanced multi-modal recommendation algorithm [J]. Journal of Computer Applications, 2025, 45(2): 421-427. |
[9] | Xuewen YAN, Zhangjin HUANG. Few-shot image classification method based on contrast learning [J]. Journal of Computer Applications, 2025, 45(2): 383-391. |
[10] | Zidong CHENG, Peng LI, Feng ZHU. Potential relation mining in internet of things threat intelligence knowledge graph [J]. Journal of Computer Applications, 2025, 45(1): 24-31. |
[11] | Wenbo ZHAO, Zitong MA, Zhe YANG. Link prediction model based on directed hypergraph adaptive convolution [J]. Journal of Computer Applications, 2025, 45(1): 15-23. |
[12] | Jialin ZHANG, Qinghua REN, Qirong MAO. Speaker verification system utilizing global-local feature dependency for anti-spoofing [J]. Journal of Computer Applications, 2025, 45(1): 308-317. |
[13] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[14] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[15] | Jiong WANG, Taotao TANG, Caiyan JIA. PAGCL: positive augmentation graph contrastive learning recommendation method without negative sampling [J]. Journal of Computer Applications, 2024, 44(5): 1485-1492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||