Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2378-2386.DOI: 10.11772/j.issn.1001-9081.2024070977
• Multimedia computing and computer simulation • Previous Articles
Yongpeng TAO, Shiqi BAI(), Zhengwen ZHOU
Received:
2024-07-09
Revised:
2024-11-19
Accepted:
2024-11-19
Online:
2025-07-10
Published:
2025-07-10
Contact:
Shiqi BAI
About author:
TAO Yongpeng, born in 1981, M. S., associate professor. His research interests include medical image processing, medical big data processing.Supported by:
通讯作者:
柏诗淇
作者简介:
陶永鹏(1981—),男,辽宁大连人,副教授,硕士,CCF会员,主要研究方向:医学图像处理、医疗大数据处理基金资助:
CLC Number:
Yongpeng TAO, Shiqi BAI, Zhengwen ZHOU. Neural architecture search for multi-tissue segmentation using convolutional and transformer-based networks in glioma segmentation[J]. Journal of Computer Applications, 2025, 45(7): 2378-2386.
陶永鹏, 柏诗淇, 周正文. 基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络[J]. 《计算机应用》唯一官方网站, 2025, 45(7): 2378-2386.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024070977
网络结构 | 模块名称 | 输入特征尺寸 | 包含操作 | 输出特征尺寸 |
---|---|---|---|---|
输入 | 输入层 | Resize操作,Concat操作 | ||
卷积层 | ||||
编码器 | NAS-ENC模块 | |||
Transformer模块 | ||||
解码器 | 跳跃连接层 | Concat操作 | ||
NAS-DEC模块 | ||||
输出 | 输出层 |
Tab. 1 Input and output dimensions of each module in NASCT-Net
网络结构 | 模块名称 | 输入特征尺寸 | 包含操作 | 输出特征尺寸 |
---|---|---|---|---|
输入 | 输入层 | Resize操作,Concat操作 | ||
卷积层 | ||||
编码器 | NAS-ENC模块 | |||
Transformer模块 | ||||
解码器 | 跳跃连接层 | Concat操作 | ||
NAS-DEC模块 | ||||
输出 | 输出层 |
方法 | TC | ET | WT | |||
---|---|---|---|---|---|---|
Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | |
3D U-Net[ | 0.741 | 24.151 | 0.722 | 26.414 | 0.760 | 19.165 |
NAS-Unet[ | 0.754 | 22.237 | 0.740 | 23.986 | 0.808 | 14.327 |
Attention U-Net[ | 0.760 | 21.813 | 0.743 | 24.181 | 0.812 | 15.232 |
Swin-Unet[ | 0.784 | 16.282 | 0.772 | 18.452 | 0.828 | 12.787 |
GCN[ | 0.781 | 17.145 | 0.752 | 20.883 | 0.831 | 12.150 |
NASCT-Net | 0.792 | 15.486 | 0.786 | 17.325 | 0.839 | 10.502 |
Tab. 2 Quantitative evaluation results of HGG segmentation of NASCT-Net and other methods on BraTS2019 dataset
方法 | TC | ET | WT | |||
---|---|---|---|---|---|---|
Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | |
3D U-Net[ | 0.741 | 24.151 | 0.722 | 26.414 | 0.760 | 19.165 |
NAS-Unet[ | 0.754 | 22.237 | 0.740 | 23.986 | 0.808 | 14.327 |
Attention U-Net[ | 0.760 | 21.813 | 0.743 | 24.181 | 0.812 | 15.232 |
Swin-Unet[ | 0.784 | 16.282 | 0.772 | 18.452 | 0.828 | 12.787 |
GCN[ | 0.781 | 17.145 | 0.752 | 20.883 | 0.831 | 12.150 |
NASCT-Net | 0.792 | 15.486 | 0.786 | 17.325 | 0.839 | 10.502 |
方法 | TC | ET | WT | |||
---|---|---|---|---|---|---|
Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | |
3D U-Net[ | 0.693 | 28.732 | 0.726 | 23.975 | 0.753 | 20.215 |
NAS-Unet[ | 0.716 | 26.157 | 0.747 | 24.062 | 0.814 | 16.023 |
Attention U-Net[ | 0.722 | 25.311 | 0.752 | 22.757 | 0.806 | 16.490 |
Swin-Unet[ | 0.746 | 19.175 | 0.787 | 16.674 | 0.818 | 15.462 |
GCN[ | 0.783 | 21.151 | 0.762 | 20.356 | 0.820 | 14.837 |
NASCT-Net | 0.759 | 18.656 | 0.782 | 17.032 | 0.825 | 14.085 |
Tab. 3 Quantitative evaluation results of LGG segmentation of NASCT-Net and other methods on BraTS2019 dataset
方法 | TC | ET | WT | |||
---|---|---|---|---|---|---|
Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | |
3D U-Net[ | 0.693 | 28.732 | 0.726 | 23.975 | 0.753 | 20.215 |
NAS-Unet[ | 0.716 | 26.157 | 0.747 | 24.062 | 0.814 | 16.023 |
Attention U-Net[ | 0.722 | 25.311 | 0.752 | 22.757 | 0.806 | 16.490 |
Swin-Unet[ | 0.746 | 19.175 | 0.787 | 16.674 | 0.818 | 15.462 |
GCN[ | 0.783 | 21.151 | 0.762 | 20.356 | 0.820 | 14.837 |
NASCT-Net | 0.759 | 18.656 | 0.782 | 17.032 | 0.825 | 14.085 |
方法 | TC | ET | WT | |||
---|---|---|---|---|---|---|
Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | |
3D U-Net[ | 0.710 | 26.432 | 0.731 | 25.015 | 0.762 | 19.215 |
NAS-Unet[ | 0.724 | 25.757 | 0.751 | 23.267 | 0.812 | 15.023 |
Attention U-Net[ | 0.731 | 23.014 | 0.763 | 21.032 | 0.818 | 15.615 |
Swin-Unet[ | 0.752 | 19.730 | 0.797 | 18.979 | 0.824 | 14.962 |
GCN[ | 0.748 | 22.878 | 0.782 | 20.137 | 0.827 | 14.533 |
NASCT-Net | 0.765 | 19.056 | 0.812 | 18.017 | 0.836 | 13.757 |
Tab. 4 Quantitative evaluation results of brain tumor segmentation on BraTS2021 dataset
方法 | TC | ET | WT | |||
---|---|---|---|---|---|---|
Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | Dice↑ | HD95/mm↓ | |
3D U-Net[ | 0.710 | 26.432 | 0.731 | 25.015 | 0.762 | 19.215 |
NAS-Unet[ | 0.724 | 25.757 | 0.751 | 23.267 | 0.812 | 15.023 |
Attention U-Net[ | 0.731 | 23.014 | 0.763 | 21.032 | 0.818 | 15.615 |
Swin-Unet[ | 0.752 | 19.730 | 0.797 | 18.979 | 0.824 | 14.962 |
GCN[ | 0.748 | 22.878 | 0.782 | 20.137 | 0.827 | 14.533 |
NASCT-Net | 0.765 | 19.056 | 0.812 | 18.017 | 0.836 | 13.757 |
模型 | CNN-Transformer结构 | NAS | VWDice损失函数 | Dice | HD95/mm | 参数量/106 |
---|---|---|---|---|---|---|
Baseline | — | — | — | 0.724 | 25.917 | 13.502 |
模型1 | √ | — | — | 0.760 | 20.181 | 16.343 |
模型2 | — | √ | — | 0.756 | 21.042 | 7.140 |
模型3 | — | — | √ | 0.783 | 14.899 | 13.502 |
模型4 | √ | √ | — | 0.794 | 14.026 | 15.065 |
模型5 | √ | — | √ | 0.820 | 12.431 | 16.343 |
模型6 | — | √ | √ | 0.812 | 13.745 | 13.502 |
NASCT-Net | √ | √ | √ | 0.832 | 12.293 | 15.506 |
Tab. 5 Quantitative evaluation results of ablation experiments
模型 | CNN-Transformer结构 | NAS | VWDice损失函数 | Dice | HD95/mm | 参数量/106 |
---|---|---|---|---|---|---|
Baseline | — | — | — | 0.724 | 25.917 | 13.502 |
模型1 | √ | — | — | 0.760 | 20.181 | 16.343 |
模型2 | — | √ | — | 0.756 | 21.042 | 7.140 |
模型3 | — | — | √ | 0.783 | 14.899 | 13.502 |
模型4 | √ | √ | — | 0.794 | 14.026 | 15.065 |
模型5 | √ | — | √ | 0.820 | 12.431 | 16.343 |
模型6 | — | √ | √ | 0.812 | 13.745 | 13.502 |
NASCT-Net | √ | √ | √ | 0.832 | 12.293 | 15.506 |
[1] | SUH J H, KOTECHAR, CHAO S T, et al. Current approaches to the management of brain metastases [J]. Nature Reviews Clinical Oncology, 2020, 17(5): 279-299. |
[2] | KARSCHNIA P, LE RHUN E, VOGELBAUM M A, et al. The evolving role of neurosurgery for central nervous system metastases in the era of personalized cancer therapy [J]. European Journal of Cancer, 2021, 156(7): 93-108. |
[3] | FECCI P E, CHAMPION C D, HOJ J, et al. The evolving modern management of brain metastasis [J]. Clinical Cancer Research, 2019, 25(22): 6570-6580. |
[4] | AOYAMA H, SHIRATO H, TAGO M, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial [J]. JAMA, 2006, 295(21): 2483-2491. |
[5] | MÜLLER-RIEMENSCHNEIDER F, BOCKELBRINK A, ERNST I, et al. Stereotactic radiosurgery for the treatment of brain metastases [J]. Radiotherapy and Oncology, 2009, 91(1): 67-74. |
[6] | TSAO M N, RADES D, WIRTH A, et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis (es): an American Society for Radiation Oncology evidence-based guideline [J]. Practical Radiation Oncology, 2012, 2(3): 210-225. |
[7] | CHAO S T, DE SALLES A, HAYASHI M, et al. Stereotactic radiosurgery in the management of limited (1-4) brain metastases: systematic review and international stereotactic radiosurgery society practice guideline [J]. Neurosurgery, 2018, 83(3): 345-353. |
[8] | SAHGAL A, AOYAMA H, KOCHER M, et al. Phase 3 trials of stereotactic radiosurgery with or without whole-brain radiation therapy for 1 to 4 brain metastases: individual patient data meta-analysis [J]. International Journal of Radiation Oncology, Biology, Physics, 2015, 91(4): 710-717. |
[9] | DOLECEK T A, PROPP J M, STROUP N E, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009 [J]. Neuro-Oncology, 2012, 14(S5): v1-v49. |
[10] | 田捷,杨鑫,秦承虎,等.光学分子影像技术及其应用[M].北京:科学出版社,2010: 70-106. |
TIAN J, YANG X, QIN C H, et al. Optical molecular imaging technology and its application [M]. Beijing: Science Press, 2010: 70-106. | |
[11] | McGIRT M J, WOODWORTH G F, COON A L, et al. Independent predictors of morbidity after image-guided stereotactic brain biopsy: a risk assessment of 270 cases [J]. Journal of Neurosurgery, 2005, 102(5): 897-901. |
[12] | GRIVALSKY S, TAMAJKA M, BENESOVA W. Segmentation of gliomas in magnetic resonance images using recurrent neural networks [C]// Proceedings of the 42nd International Conference on Telecommunications and Signal Processing. Piscataway: IEEE, 2019: 539-542. |
[13] | GHASSEMI N, SHOEIBI A, ROUHANI M. Deep neural network with generative adversarial networkspre-training for brain tumor classification based on MR images [J]. Biomedical Signal Processing and Control, 2020, 57: No.101678. |
[14] | BALAMURUGAN T, GNANAMANOHARAN E. Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier [J]. Neural Computing and Applications, 2023, 35(6): 4739-4753. |
[15] | FARAJZADEH N, SADEGHZADEH N, HASHEMZADEH M. Brain tumor segmentation and classification on MRI via deep hybrid representation learning [J]. Expert Systems with Applications, 2023, 224: No.119963. |
[16] | ANDREWS D W, SCOTT C B, SPERDUTO P W, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial [J]. The Lancet, 2004, 363(9422): 1665-1672. |
[17] | ZHANG Z, YANG J, HO A, et al. A predictive model for distinguishing radiation necrosis from tumor progression after Gamma knife radiosurgery based on radiomic features from MR images [J]. European Radiology, 2018, 28(6): 2255-2263. |
[18] | KEATS L, SITZER D, BALICE G. The relationship between social cognition, neurocognition, and symptomatology on social skill capacity among inpatients with schizophrenia-spectrum disorders [J]. Archives of Clinical Neuropsychology, 2015, 30(6): 501-502. |
[19] | LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis [J]. European Journal of Cancer, 2012, 48(4): 441-446. |
[20] | VAN VELDEN F H P, KRAMER G M, FRINGS V, et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation [J]. Molecular Imaging and Biology, 2016, 18(5): 788-795. |
[21] | GALIMZIANOVA A, PERNUŠ F, LIKAR B, et al. Stratified mixture modeling for segmentation of white-matter lesions in brain MR images [J]. NeuroImage, 2015, 124(Pt A): 1031-1043. |
[22] | WEISS N, RUECKERT D, RAO A. Multiple sclerosis lesion segmentation using dictionary learning and sparse coding [C]// Proceedings of the 2013 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 8149. Berlin: Springer, 2013: 735-742. |
[23] | KARIMAGHALOO Z, RIVAZ H, ARNOLD D L, et al. Adaptive voxel, texture and temporal conditional random fields for detection of gad-enhancing multiple sclerosis lesions in brain MRI [C]// Proceedings of the 2013 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 8151. Berlin: Springer, 2013: 543-550. |
[24] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham: Springer, 2015: 234-241. |
[25] | OKTAY O, SCHLEMPER J, LE FOLGOCL L, et al. Attention U-Net: learning where to look for the pancreas [EB/OL]. [2024-04-20]. . |
[26] | 朱婷,王瑜,肖洪兵,等.基于多通路CNN的多模态MRI神经胶质瘤分割[J].计算机应用与软件,2018, 35(4): 220-226. |
ZHU T, WANG Y, XIAO H B, et al. Multi-modality MRI gliomas segmentation based on multi-channel CNN [J]. Computer Applications and Software, 2018, 35(4): 220-226. | |
[27] | 李歆,王雪真,洪金省,等.基于图卷积网络的脑胶质瘤核磁共振图像分割[J].计算机系统应用,2024, 33(8): 231-239. |
LI X, WANG X Z, HONG J S, et al. Magnetic resonance image segmentation of gliomas based on graph convolution network [J]. Computer Systems and Applications, 2024, 33(8): 231-239. | |
[28] | CHEN J, LU Y, YU Q, et al. TransUnet: Transformers make strong encoders for medical image segmentation [EB/OL]. [2024-02-08]. . |
[29] | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. [2024-06-03]. . |
[30] | LIN J, LIN J, LU C, et al. CKD-TransBTS: clinical knowledge-driven hybrid transformer with modality-correlated cross-attention for brain tumor segmentation [J]. IEEE Transactions on Medical Imaging, 2023, 42(8): 2451-2461. |
[31] | CAO H, WANG Y, CHEN J. Swin-Unet: Unet-like pure transformer for medical image segmentation [C]// Proceedings of the 2022 European Conference on Computer Vision Workshops, LNCS 13803. Cham: Springer, 2022: 205-218. |
[32] | LIN A, CHEN B, XU J, et al. DS-TransUnet: dual Swin Transformer U-Net for medical image segmentation [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.4005615. |
[33] | SALEHIN I, ISLAM M S, SAHA P, et al. AutoML: a systematic review on automated machine learning with neural architecture search [J]. Journal of Information and Intelligence, 2024, 2(1): 52-81. |
[34] | MA B, ZHANG J, XIA Y, et al. VNAS: variational neural architecture search [J]. International Journal of Computer Vision, 2024, 132(9): 3689-3713. |
[35] | LIU Y, SUN Y, XUE B, et al. A survey on evolutionary neural architecture search [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(2): 550-570. |
[36] | WENG Y, ZHOU T, LI Y, et al. NAS-Unet: neural architecture search for medical image segmentation [J]. IEEE Access, 2019, 7: 44247-44257. |
[37] | WEI J, FAN Z. Genetic U-Net: automatically designing lightweight U-shaped CNN architectures using the genetic algorithm for retinal vessel segmentation [EB/OL]. [2024-11-02]. . |
[38] | YAN X, JIANG W, SHI Y, et al. MS-NAS: multi-scale neural architecture search for medical image segmentation [C]// Proceedings of the 2020 International Conference on Medical Image and Computing Computer-Assisted Intervention, LNCS 12261. Cham: Springer, 2020: 388-397. |
[39] | LIU X, YAO C, CHEN H, et al. BTSC-TNAS: a neural architecture search-based transformer for brain tumor segmentation and classification [J]. Computerized Medical Imaging and Graphics, 2023, 110: No.102307. |
[40] | XU S, QUAN H. ECT-NAS: searching efficient CNN-Transformers architecture for medical image segmentation [C]// Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2021: 1601-1604. |
[41] | ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation [C]// Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9901. Cham: Springer, 2016: 424-432. |
[1] | Haoyu LIU, Pengwei KONG, Yaoli WANG, Qing CHANG. Pedestrian detection algorithm based on multi-view information [J]. Journal of Computer Applications, 2025, 45(7): 2325-2332. |
[2] | Yingjun ZHANG, Weiwei YAN, Binhong XIE, Rui ZHANG, Wangdong LU. Gradient-discriminative and feature norm-driven open-world object detection [J]. Journal of Computer Applications, 2025, 45(7): 2203-2210. |
[3] | Dehui ZHOU, Jun ZHAO, Jinfeng CHENG. Tiny defect detection algorithm for bearing surface based on RT-DETR [J]. Journal of Computer Applications, 2025, 45(6): 1987-1997. |
[4] | Sheping ZHAI, Yan HUANG, Qing YANG, Rui YANG. Multi-view entity alignment combining triples and text attributes [J]. Journal of Computer Applications, 2025, 45(6): 1793-1800. |
[5] | Qing ZHANG, Fan YANG, Yuhan FANG. Chinese spelling correction algorithm based on multi-modal information fusion [J]. Journal of Computer Applications, 2025, 45(5): 1528-1534. |
[6] | Dan WANG, Wenhao ZHANG, Lijuan PENG. Channel estimation of reconfigurable intelligent surface assisted communication system based on deep learning [J]. Journal of Computer Applications, 2025, 45(5): 1613-1618. |
[7] | Kai CHEN, Hailiang YE, Feilong CAO. Classification algorithm for point cloud based on local-global interaction and structural Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1671-1676. |
[8] | Pengyu CHEN, Xiushan NIE, Nanjun LI, Tuo LI. Semi-supervised video object segmentation method based on spatio-temporal decoupling and regional robustness enhancement [J]. Journal of Computer Applications, 2025, 45(5): 1379-1386. |
[9] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[10] | Pengcheng XU, Lei HE, Chuan LI, Weiqi QIAN, Tun ZHAO. Deep symbolic regression method based on Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1455-1463. |
[11] | Dingmu YANG, Longqiang NI, Jing LIANG, Zhaoyuan QIU, Yongzhen ZHANG, Zhiqiang QI. Protocol conversion method based on semantic similarity [J]. Journal of Computer Applications, 2025, 45(4): 1263-1270. |
[12] | Baohua YUAN, Jialu CHEN, Huan WANG. Medical image segmentation network integrating multi-scale semantics and parallel double-branch [J]. Journal of Computer Applications, 2025, 45(3): 988-995. |
[13] | Dixin WANG, Jiahao WANG, Min LI, Hao CHEN, Guangyao HU, Yu GONG. Abnormal attack detection for underwater acoustic communication network [J]. Journal of Computer Applications, 2025, 45(2): 526-533. |
[14] | Yalun WANG, Yangsen ZHANG, Siwen ZHU. Headline generation model with position embedding for knowledge reasoning [J]. Journal of Computer Applications, 2025, 45(2): 345-353. |
[15] | Xinran XU, Shaobing ZHANG, Miao CHENG, Yang ZHANG, Shang ZENG. Bearings fault diagnosis method based on multi-pathed hierarchical mixture-of-experts model [J]. Journal of Computer Applications, 2025, 45(1): 59-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||