Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (7): 2378-2386.DOI: 10.11772/j.issn.1001-9081.2024070977

• Multimedia computing and computer simulation • Previous Articles    

Neural architecture search for multi-tissue segmentation using convolutional and transformer-based networks in glioma segmentation

Yongpeng TAO, Shiqi BAI(), Zhengwen ZHOU   

  1. School of Software,Dalian University of Foreign Languages,Dalian Liaoning 116044,China
  • Received:2024-07-09 Revised:2024-11-19 Accepted:2024-11-19 Online:2025-07-10 Published:2025-07-10
  • Contact: Shiqi BAI
  • About author:TAO Yongpeng, born in 1981, M. S., associate professor. His research interests include medical image processing, medical big data processing.
    BAI Shiqi, born in 2002, M. S. candidate. Her research interests include machine learning.
    ZHOU Zhengwen, born in 1998, M. S. candidate. Her research interests include machine learning.
  • Supported by:
    Scientific Research Fund of Liaoning Provincial Department of Education (General Project)(LJKZ1033)

基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络

陶永鹏, 柏诗淇(), 周正文   

  1. 大连外国语大学 软件学院,辽宁 大连 116044
  • 通讯作者: 柏诗淇
  • 作者简介:陶永鹏(1981—),男,辽宁大连人,副教授,硕士,CCF会员,主要研究方向:医学图像处理、医疗大数据处理
    柏诗淇(2002—),女,辽宁沈阳人,硕士研究生,主要研究方向:机器学习 dufl2021@163.com
    周正文(1998—),女,重庆人,硕士研究生,主要研究方向:机器学习。
  • 基金资助:
    辽宁省教育厅科学研究经费资助项目(面上项目)(LJKZ1033)

Abstract:

The significant variations in shape and size, blurred boundaries, and complex tissue structures of glioma in Magnetic Resonance Imaging (MRI) Images, lead to challenges in task for brain tumor segmentation. Typically, this task requires researchers with deep professional knowledge to design complex personalized network models, which is time-consuming and needs many human resources. To simplify the network design process and obtain the optimal network architecture automatically, a Neural Architecture Search for multi-tissue segmentation using Convolutional and Transformer-based Networks in glioma segmentation (NASCT-Net) was proposed to improve segmentation precision during construction of network architecture for multi-modal MRI brain tumor segmentation. Firstly, Neural Architecture Search (NAS) technology was applied to construction of an encoder, thereby forming stackable Neural Architecture Search ENcoder CNN (NAS-CNN) encoding modules to optimize the network structure for precise glioma segmentation automatically. Secondly, a feature encoding module based on Transformer was integrated at the lower layers of the encoder to improve the representation ability of relative positions and global information among tumor components. Finally, a Volume-Weighted Dice Loss function (VWDiceLoss) was constructed to address the imbalance between foreground and background. NASCT-Net was compared with methods such as Swin-Unet on BraTS2019 brain tumor datasets. Experimental results show that NASCT-Net has an average Dice Similarity Coefficient (DSC) improvement of 0.009 and an average Hausdorff Distance (HD) decrease of 1.831 mm, validating the effectiveness of NASCT-Net in enhancing the precision of multi-tissue brain tumor segmentation.

Key words: network architecture, Network Architecture Search (NAS), brain tumor segmentation, Convolutional Neural Network (CNN), Transformer

摘要:

脑胶质瘤在磁共振成像(MRI)图像中的形状大小变化大、边界模糊且组织结构复杂,这些特点导致了脑肿瘤分割任务的挑战性,通常这种任务需要具备深厚专业知识的研究人员设计复杂定制的网络模型才能完成。这一过程不仅耗时,而且需要大量的人力资源。为了简化网络设计流程并自动获取最优的网络结构,提出一种基于卷积和Transformer神经网络架构搜索的脑胶质瘤多组织分割网络(NASCT-Net),以在构建用于多模态MRI脑肿瘤分割的网络架构的过程中,提高分割的精确度。首先,将神经架构搜索(NAS)技术应用于编码器的构建,形成可堆叠的NAS编解码模块,以自动优化适用于脑胶质瘤精准分割的网络架构;其次,在编码器底层集成基于Transformer的特征编码模块,以增强对肿瘤各组之间的相对位置和全局信息的表征能力;最后,通过构建体积加权Dice损失函数(VWDiceLoss),解决前景与背景的不平衡问题。在BraTS2019脑肿瘤数据集上与Swin-Unet等方法进行比较的实验结果表明,NASCT-Net的平均Dice相似系数(DSC)提高了0.009,同时平均Hausdorff距离(HD)降低了1.831 mm,验证了NASCT-Net在提高脑肿瘤多组织分割精度方面的有效性。

关键词: 网络架构, 神经网络架构搜索, 脑肿瘤分割, 卷积神经网络, Transformer

CLC Number: