Journal of Computer Applications

    Next Articles

Semi-supervised image dehazing algorithm based on teacher-student learning

JING Panfeng1, LIANG Yudong1,2, LI Chaowei3, GUO Junru1, GUO Jinyu1   

  1. 1.School of Computer and Information Technology, Shanxi University 2. Key Laboratory of Ministry of for Education Computational Intelligence and Chinese Information Processing (Shanxi University) 3.Jingying Shuzhi Technology Company Limited
  • Received:2024-09-25 Revised:2025-01-10 Online:2025-03-17 Published:2025-03-17
  • About author:JING Panfeng, born in 1999, M. S. candidate. His research interests include computer vision, image processing. LIANG Yudong, born in 1988, Ph. D., associate professor. His research interests include computer vision, image vision. LI Chaowei, born in 1987, M. S. His research interests include computer vision, intelligent coal mining. GUO Junru, born in 1999, M. S. candidate. Her research interests include computer vision, image processing. GUO Jinyu, born in 2002, M. S. candidate. His research interests include computer vision, image processing.
  • Supported by:
    National Natural Science Foundation of China(61802237,62272284), Fundamental Research Program of Shanxi Province(202203021221002,2022-
    03021211291), Natural Science Foundation of Shanxi Province (201901D211176,202103021223464), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2019L0066), Science and Technology Major Project of Shanxi Province (202101020101019), Key R.D Program of Shanxi Provine(202102070301019) and the Special Fund for Science and Technology Innovation Teams of Shanxi (202204051001015).

基于师生学习的半监督图像去雾算法

景攀峰1,梁宇栋1,2,李超伟3,郭俊茹1,郭晋育1   

  1. 1.山西大学 计算机与信息技术学院 2.计算智能与中文信息处理教育部重点实验室(山西大学) 3.精英数智科技股份有限公司
  • 通讯作者: 梁宇栋
  • 作者简介:景攀峰(1999—),男,山西运城人,硕士研究生,主要研究方向:计算机视觉、图像处理;梁宇栋(1988—),男,山西太原人,副教授,博士,CCF会员,主要研究方向:计算机视觉、图像视觉;李超伟(1987—),男,山西吕梁人,硕士,主要研究方向:计算机视觉、煤矿智能化;郭俊茹(1999—),女,山西运城人,硕士研究生,主要研究方向:计算机视觉、图像处理;郭晋育(2002—),男,山西吕梁人,硕士研究生,主要研究方向:计算机视觉、图像处理。
  • 基金资助:
    国家自然科学基金资助项目(61802237,62272284);山西省基础研究计划项目(202203021221002,202203021211291);山西省自然科学基金(201901D211176,202103021223464);山西省高等学校科技创新项目(2019L0066);山西省科技重大专项计划(202101020101019);山西省重点研发计划(202102070301019);山西省科技创新人才团队专项资助(202204051001015)

Abstract: Image dehazing is a prominent topic in the field of computer vision. However, acquiring large-scale, high-quality paired datasets from the real world is costly and challenging. Consequently, most existing methods resort to using synthetic data for fully supervised deep learning model training, which can lead to suboptimal real-world performance. To bridge the domain gap between synthetic and real data, a semi-supervised image dehazing algorithm based on teacher-student learning was introduced. This approach leverages Exponential Moving Average (EMA) strategies to update the teacher model and conducts end-to-end dehazing learning, significantly mitigating domain shift issues between synthetic and real data and enhancing generalization performance in real hazy scenarios. Experimental results demonstrate the method's strong performance on publicly available synthetic and real hazy image datasets, delivering superior dehazing visual results.

Key words: image dehazing, deep learning, semi-supervised learning, teacher-student learning, domain difference

摘要: 图像去雾是计算机视觉领域的热点话题之一,然而,由于真实世界中大规模高质量的配对数据集的获取存在成本昂贵、实施困难等问题。现有的大多数方法往往利用合成数据对深度学习模型进行全监督训练,但此类方法可能会导致模型在真实场景下的泛化性能较差。为了缓解真实域和合成域之间的域差异问题,提出一种基于师生学习的半监督图像去雾算法,该算法采用师生学习半监督框架,利用指数移动平均(EMA)策略更新教师模型,端到端地进行去雾学习。所提半监督去雾模型架构显著缓解了合成数据与真实数据之间的域偏移问题,并提高模型在真实有雾场景下的泛化性能。实验结果表明,所提算法在公开的合成和真实有雾图像数据集上取得了较好性能,并获得更好的去雾视觉效果。

关键词: 图像去雾,, 深度学习, 半监督学习, 师生学习, 域差异

CLC Number: