Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (5): 1613-1618.DOI: 10.11772/j.issn.1001-9081.2024050587
• Network and communications • Previous Articles
Dan WANG1,2, Wenhao ZHANG1,2(), Lijuan PENG1,2
Received:
2024-05-11
Revised:
2024-07-18
Accepted:
2024-07-22
Online:
2024-07-25
Published:
2025-05-10
Contact:
Wenhao ZHANG
About author:
WANG Dan, born in 1982, Ph. D., professorate senior engineer. Her research interests include physical layer algorithms for mobile communication, signal processing.Supported by:
通讯作者:
张文豪
作者简介:
王丹(1982—),女,重庆人,正高级工程师,博士,主要研究方向:移动通信物理层算法、信号处理基金资助:
CLC Number:
Dan WANG, Wenhao ZHANG, Lijuan PENG. Channel estimation of reconfigurable intelligent surface assisted communication system based on deep learning[J]. Journal of Computer Applications, 2025, 45(5): 1613-1618.
王丹, 张文豪, 彭丽娟. 基于深度学习的智能反射面辅助通信系统信道估计[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1613-1618.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024050587
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
工作频段 | 28 GHz | 样本数 | 120 000 |
系统带宽 | 100 MHz | 基站天线数 | 16( |
子载波数 | 512 | RIS单元数 | 64( |
路径数 | 3 | 噪声大小 | 10 dB |
Tab.1 Dataset parameter setting
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
工作频段 | 28 GHz | 样本数 | 120 000 |
系统带宽 | 100 MHz | 基站天线数 | 16( |
子载波数 | 512 | RIS单元数 | 64( |
路径数 | 3 | 噪声大小 | 10 dB |
网络模型 | 卷积层数 | 滤波器数量 | 网络结构 |
---|---|---|---|
DnCNN | 1 | 64 | Conv+ReLU |
2~16 | 64 | Conv+BN+ReLU | |
17 | 2 | Conv | |
CDRN | 1~15 | 64 | Conv+BN+ReLU |
16 | 2 | Conv | |
17~31 | 64 | Conv+BN+ReLU | |
32 | 2 | Conv | |
33~47 | 64 | Conv+BN+ReLU | |
48 | 2 | Conv |
Tab.2 Parameter setting of comparison models
网络模型 | 卷积层数 | 滤波器数量 | 网络结构 |
---|---|---|---|
DnCNN | 1 | 64 | Conv+ReLU |
2~16 | 64 | Conv+BN+ReLU | |
17 | 2 | Conv | |
CDRN | 1~15 | 64 | Conv+BN+ReLU |
16 | 2 | Conv | |
17~31 | 64 | Conv+BN+ReLU | |
32 | 2 | Conv | |
33~47 | 64 | Conv+BN+ReLU | |
48 | 2 | Conv |
信道估计方案 | FLOPs | 单轮运行时间/s |
---|---|---|
DnCNN | 1 137 180 672 | 6.5 |
CDRN | 3 185 049 600 | 18.0 |
CDN | 1 816 657 920 | 7.5 |
Tab. 3 Comparison of complexity of different schemes
信道估计方案 | FLOPs | 单轮运行时间/s |
---|---|---|
DnCNN | 1 137 180 672 | 6.5 |
CDRN | 3 185 049 600 | 18.0 |
CDN | 1 816 657 920 | 7.5 |
1 | LIU S, LEI M, ZHAO M J. Deep learning based channel estimation for intelligent reflecting surface aided MISO-OFDM systems[C]// Proceedings of the IEEE 92nd Vehicular Technology Conference. Piscataway: IEEE, 2020: 1-5. |
2 | MISHRA D, JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]// Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 4659-4663. |
3 | ZHENG B, ZHANG R. Intelligent reflecting surface-enhanced OFDM: channel estimation and reflection optimization[J]. IEEE Wireless Communications Letters, 2020, 9(4): 518-522. |
4 | WEI L, HUANG C, ALEXANDROPOULOS G C, et al. Parallel factor decomposition channel estimation in RIS-assisted multi-user MISO communication[C]// Proceedings of the IEEE 11th Sensor Array and Multichannel Signal Processing Workshop. Piscataway: IEEE, 2020: 1-5. |
5 | ELBIR A M, PAPAZAFEIROPOULOS A, KOURTESSIS P, et al. Deep channel learning for large intelligent surfaces aided mm-wave massive MIMO systems[J]. IEEE Wireless Communications Letters, 2020, 9(9): 1447-1451. |
6 | DAI L, WEI X. Distributed machine learning based downlink channel estimation for RIS assisted wireless communications[J]. IEEE Transactions on Communications, 2022, 70(7): 4900-4909. |
7 | KUNDU N K, McKAY M R. Channel estimation for reconfigurable intelligent surface aided MISO communications: from LMMSE to deep learning solutions[J]. IEEE Open Journal of the Communications Society, 2021, 2: 471-487. |
8 | ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. |
9 | ZHANG K, ZUO W, ZHANG L. FFDNet: toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622. |
10 | FENG H, ZHAO Y. mmWave RIS-assisted SIMO channel estimation based on global attention residual network[J]. IEEE Wireless Communications Letters, 2023, 12(7): 1179-1183. |
11 | XIE W, XIAO J, ZHU P, et al. Deep compressed sensing-based cascaded channel estimation for RIS-aided communication systems[J]. IEEE Wireless Communications Letters, 2022, 11(4): 846-850. |
12 | WANG Y, LU H, SUN H. Channel estimation in IRS-enhanced mmWave system with super-resolution network[J]. IEEE Communications Letters, 2021, 25(8): 2599-2603. |
13 | JIN Y, ZHANG J, ZHANG X, et al. Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 11083-11088. |
14 | LIU C, LIU X, NG D W K, et al. Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications[J]. IEEE Transactions on Wireless Communications, 2021, 21(2): 898-912. |
15 | 重庆邮电大学空间通信研究院. 一种基于深度残差学习的智能反射面辅助通信系统信道估计方法:202310728186.1[P]. 2023-08-22. |
Space Communication Research Institute of Chongqing University of Posts and Telecommunications. A channel estimation method based on deep residual learning for intelligent reflecting surface assisted communication system: 202310728186.1[P]. 2023-08-22. | |
16 | WEI X, SHEN D, DAI L. Channel estimation for RIS assisted wireless communications — Part Ⅱ: an improved solution based on double-structured sparsity[J]. IEEE Communications Letters, 2021, 25(5): 1403-1407. |
17 | HOU G, YANG Y, XUE J H. Residual dilated network with attention for image blind denoising[C]// Proceedings of the 2019 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2019: 248-253. |
18 | 陈刚,廖永为,杨振国,等. 基于多特征融合的多尺度生成对抗网络图像修复算法[J]. 计算机应用, 2023, 43(2):536-544. |
CHEN G, LIAO Y W, YANG Z G, et al. Image inpainting algorithm of multi-scale generative adversarial network based on multi-feature fusion[J]. Journal of Computer Applications, 2023, 43(2):536-544. | |
19 | MENG Y, ZHANG J. A novel gray image denoising method using convolutional neural network[J]. IEEE Access, 2022, 10: 49657-49676. |
[1] | Xueying LI, Kun YANG, Guoqing TU, Shubo LIU. Adversarial sample generation method for time-series data based on local augmentation [J]. Journal of Computer Applications, 2025, 45(5): 1573-1581. |
[2] | Man CHEN, Xiaojun YANG, Huimin YANG. Pedestrian trajectory prediction based on graph convolutional network and endpoint induction [J]. Journal of Computer Applications, 2025, 45(5): 1480-1487. |
[3] | Hui LI, Bingzhi JIA, Chenxi WANG, Ziyu DONG, Jilong LI, Zhaoman ZHONG, Yanyan CHEN. Generative adversarial network underwater image enhancement model based on Swin Transformer [J]. Journal of Computer Applications, 2025, 45(5): 1439-1446. |
[4] | Sijie NIU, Yuliang LIU. Auxiliary diagnostic method for retinopathy based on dual-branch structure with knowledge distillation [J]. Journal of Computer Applications, 2025, 45(5): 1410-1414. |
[5] | Jie HU, Qiyang ZHENG, Jun SUN, Yan ZHANG. Multi-label classification model based on multi-label relational graph and local dynamic reconstruction learning [J]. Journal of Computer Applications, 2025, 45(4): 1104-1112. |
[6] | Yuchen LI, Junyi WU, Mengjia GE, Lili PAN, Xiaorong JING. Joint beamforming and power allocation in RIS-assisted multi-cluster NOMA-DFRC system [J]. Journal of Computer Applications, 2025, 45(4): 1256-1262. |
[7] | Shiyue GUO, Jianwu DANG, Yangping WANG, Jiu YONG. 3D hand pose estimation combining attention mechanism and multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(4): 1293-1299. |
[8] | Lihu PAN, Shouxin PENG, Rui ZHANG, Zhiyang XUE, Xuzhen MAO. Video anomaly detection for moving foreground regions [J]. Journal of Computer Applications, 2025, 45(4): 1300-1309. |
[9] | Yiding WANG, Zehao WANG, Yaoli LI, Shaoqing CAI, Yuan YUAN. Multi-scale 2D-Adaboost microscopic image recognition algorithm of Chinese medicinal materials powder [J]. Journal of Computer Applications, 2025, 45(4): 1325-1332. |
[10] | Yang ZHOU, Hui LI. Remote sensing image building extraction network based on dual promotion of semantic and detailed features [J]. Journal of Computer Applications, 2025, 45(4): 1310-1316. |
[11] | Chun XU, Shuangyan JI, Huan MA, Enwei SUN, Mengmeng WANG, Mingyu SU. Consultation recommendation method based on knowledge graph and dialogue structure [J]. Journal of Computer Applications, 2025, 45(4): 1157-1168. |
[12] | Liqin WANG, Zhilei GENG, Yingshuang LI, Yongfeng DONG, Meng BIAN. Open-world knowledge reasoning model based on path and enhanced triplet text [J]. Journal of Computer Applications, 2025, 45(4): 1177-1183. |
[13] | Liwei ZHANG, Quan LIANG, Yutao HU, Qiaole ZHU. Channel shuffle attention mechanism based on group convolution [J]. Journal of Computer Applications, 2025, 45(4): 1069-1076. |
[14] | Kunyuan JIANG, Xiaoxia LI, Li WANG, Yaodan CAO, Xiaoqiang ZHANG, Nan DING, Yingyue ZHOU. Boundary-cross supervised semantic segmentation network with decoupled residual self-attention [J]. Journal of Computer Applications, 2025, 45(4): 1120-1129. |
[15] | Baohua YUAN, Jialu CHEN, Huan WANG. Medical image segmentation network integrating multi-scale semantics and parallel double-branch [J]. Journal of Computer Applications, 2025, 45(3): 988-995. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||