Journal of Computer Applications ›› 2025, Vol. 45 ›› Issue (11): 3593-3600.DOI: 10.11772/j.issn.1001-9081.2024111574
• Data science and technology • Previous Articles
Qiuyan YAN(
), Hui JIANG, Zhujun JIANG, Boxue LI
Received:2024-11-05
Revised:2025-01-06
Accepted:2025-01-07
Online:2025-02-14
Published:2025-11-10
Contact:
Qiuyan YAN
About author:JIANG Hui, born in 1999, M. S. His research interests include time series data mining, anomaly detection.Supported by:通讯作者:
闫秋艳
作者简介:蒋辉(1999—),男,江苏宿迁人,硕士,CCF会员,主要研究方向:时序数据挖掘、异常检测基金资助:CLC Number:
Qiuyan YAN, Hui JIANG, Zhujun JIANG, Boxue LI. Probabilistic generative graph attention network method for multi-dimensional time series root cause analysis[J]. Journal of Computer Applications, 2025, 45(11): 3593-3600.
闫秋艳, 蒋辉, 姜竹郡, 李博雪. 面向多维时间序列根因分析的概率生成图注意力网络方法[J]. 《计算机应用》唯一官方网站, 2025, 45(11): 3593-3600.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2024111574
| 方法 | SWaT数据集 | WADI数据集 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| P@1 | P@3 | P@5 | P@7 | mAP@3 | mAP@5 | mAP@7 | MRR | P@1 | P@3 | P@5 | P@7 | mAP@3 | mAP@5 | mAP@7 | MRR | |
| PC | 12.50 | 13.54 | 34.38 | 47.92 | 12.85 | 20.42 | 26.64 | 26.16 | 7.14 | 27.38 | 35.0 | 44.05 | 16.27 | 23.90 | 28.47 | 27.74 |
| cLSTM | 12.50 | 13.54 | 28.13 | 40.63 | 13.89 | 17.71 | 23.81 | 29.35 | 0.00 | 20.24 | 35.0 | 47.62 | 11.51 | 18.55 | 25.83 | 24.40 |
| DYNOTEARS | 12.50 | 29.17 | 32.29 | 34.38 | 20.14 | 24.38 | 26.93 | 27.85 | 7.14 | 14.29 | 30.00 | 29.76 | 10.71 | 17.43 | 20.95 | 22.23 |
| GOLEM | 6.25 | 7.29 | 12.50 | 39.58 | 7.64 | 9.58 | 16.96 | 22.36 | 0.00 | 19.05 | 12.5 | 39.58 | 9.92 | 20.38 | 27.82 | 23.48 |
| GNN | 18.75 | 19.79 | 49.75 | 55.08 | 19.06 | 30.92 | 39.53 | 35.14 | 14.28 | 36.19 | 44.28 | 48.86 | 25.83 | 29.31 | 35.15 | 35.71 |
| GDN | 18.75 | 20.04 | 51.19 | 63.70 | 19.31 | 31.23 | 41.89 | 34.12 | 21.42 | 37.59 | 45.61 | 53.57 | 26.33 | 32.30 | 42.43 | 37.58 |
| GPRCA | 25.00 | 20.81 | 52.33 | 61.04 | 22.43 | 33.19 | 41.71 | 38.09 | 28.57 | 38.90 | 49.29 | 52.74 | 29.43 | 34.57 | 40.31 | 41.71 |
Tab. 1 Experimental results on SWaT and WADI datasets
| 方法 | SWaT数据集 | WADI数据集 | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| P@1 | P@3 | P@5 | P@7 | mAP@3 | mAP@5 | mAP@7 | MRR | P@1 | P@3 | P@5 | P@7 | mAP@3 | mAP@5 | mAP@7 | MRR | |
| PC | 12.50 | 13.54 | 34.38 | 47.92 | 12.85 | 20.42 | 26.64 | 26.16 | 7.14 | 27.38 | 35.0 | 44.05 | 16.27 | 23.90 | 28.47 | 27.74 |
| cLSTM | 12.50 | 13.54 | 28.13 | 40.63 | 13.89 | 17.71 | 23.81 | 29.35 | 0.00 | 20.24 | 35.0 | 47.62 | 11.51 | 18.55 | 25.83 | 24.40 |
| DYNOTEARS | 12.50 | 29.17 | 32.29 | 34.38 | 20.14 | 24.38 | 26.93 | 27.85 | 7.14 | 14.29 | 30.00 | 29.76 | 10.71 | 17.43 | 20.95 | 22.23 |
| GOLEM | 6.25 | 7.29 | 12.50 | 39.58 | 7.64 | 9.58 | 16.96 | 22.36 | 0.00 | 19.05 | 12.5 | 39.58 | 9.92 | 20.38 | 27.82 | 23.48 |
| GNN | 18.75 | 19.79 | 49.75 | 55.08 | 19.06 | 30.92 | 39.53 | 35.14 | 14.28 | 36.19 | 44.28 | 48.86 | 25.83 | 29.31 | 35.15 | 35.71 |
| GDN | 18.75 | 20.04 | 51.19 | 63.70 | 19.31 | 31.23 | 41.89 | 34.12 | 21.42 | 37.59 | 45.61 | 53.57 | 26.33 | 32.30 | 42.43 | 37.58 |
| GPRCA | 25.00 | 20.81 | 52.33 | 61.04 | 22.43 | 33.19 | 41.71 | 38.09 | 28.57 | 38.90 | 49.29 | 52.74 | 29.43 | 34.57 | 40.31 | 41.71 |
| 方法 | P@1 | P@3 | mAP@3 | MRR |
|---|---|---|---|---|
| PC | 14.29 | 38.36 | 25.22 | 39.77 |
| cLSTM | 14.29 | 40.74 | 25.74 | 40.43 |
| DYNOTEARS | 15.87 | 34.13 | 22.49 | 39.50 |
| GOLEM | 12.69 | 33.60 | 21.52 | 38.18 |
| GNN | 17.46 | 40.48 | 28.31 | 42.38 |
| GDN | 19.05 | 45.24 | 29.36 | 42.91 |
| GPRCA | 19.05 | 42.06 | 30.42 | 43.70 |
Tab. 2 Experimental results on Mine dataset
| 方法 | P@1 | P@3 | mAP@3 | MRR |
|---|---|---|---|---|
| PC | 14.29 | 38.36 | 25.22 | 39.77 |
| cLSTM | 14.29 | 40.74 | 25.74 | 40.43 |
| DYNOTEARS | 15.87 | 34.13 | 22.49 | 39.50 |
| GOLEM | 12.69 | 33.60 | 21.52 | 38.18 |
| GNN | 17.46 | 40.48 | 28.31 | 42.38 |
| GDN | 19.05 | 45.24 | 29.36 | 42.91 |
| GPRCA | 19.05 | 42.06 | 30.42 | 43.70 |
| 方法 | SWaT | Mine | ||||
|---|---|---|---|---|---|---|
| P@7 | mAP@7 | MRR | P@3 | mAP@3 | MRR | |
| GPRCA | 61.04 | 41.71 | 38.09 | 42.06 | 30.42 | 43.70 |
| GPRCA-N | 55.08 | 39.53 | 35.14 | 40.48 | 28.31 | 42.38 |
| GPRCA-I | 52.22 | 33.36 | 31.21 | 40.48 | 27.25 | 40.79 |
| GPRCA-T | 47.53 | 28.05 | 29.96 | 39.95 | 25.93 | 39.85 |
Tab. 3 Ablation experimental results on SWaT and Mine datasets
| 方法 | SWaT | Mine | ||||
|---|---|---|---|---|---|---|
| P@7 | mAP@7 | MRR | P@3 | mAP@3 | MRR | |
| GPRCA | 61.04 | 41.71 | 38.09 | 42.06 | 30.42 | 43.70 |
| GPRCA-N | 55.08 | 39.53 | 35.14 | 40.48 | 28.31 | 42.38 |
| GPRCA-I | 52.22 | 33.36 | 31.21 | 40.48 | 27.25 | 40.79 |
| GPRCA-T | 47.53 | 28.05 | 29.96 | 39.95 | 25.93 | 39.85 |
| [1] | SOLDANI J, BROGI A. Anomaly detection and failure root cause analysis in (micro) service-based cloud applications: a survey[J]. ACM Computing Surveys, 2023, 55(3): No.59. |
| [2] | SOLDANI J, TAMBURRI D A, VAN DEN HEUVEL W J. The pains and gains of microservices: a systematic grey literature review[J]. Journal of Systems and Software, 2018, 146: 215-232. |
| [3] | PYUN H, KIM K, HA D, et al. Root causality analysis at early abnormal stage using principal component analysis and multivariate Granger causality[J]. Process Safety and Environmental Protection, 2020, 135: 113-125. |
| [4] | QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2): 220-234. |
| [5] | 李金娜,高溪泽,柴天佑,等.数据驱动的工业过程运行优化控制[J].控制理论与应用,2016,33(12):1584-1592. |
| LI J N, GAO X Z, CHAI T Y, et al. Data-driven operational optimization control of industrial processes[J]. Control Theory and Applications, 2016, 33(12): 1584-1592. | |
| [6] | YAN S, SHAN C, YANG W, et al. CMMD: cross-metric multi-dimensional root cause analysis[C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 4310-4320. |
| [7] | 王恩元,刘晓斐,何学秋,等.煤岩动力灾害声电协同监测技术及预警应用[J].中国矿业大学学报,2018,47(5):942-948. |
| WANG E Y, LIU X F, HE X Q, et al. Acoustic emission and electromagnetic radiation synchronized monitoring technology and early-warning application for coal and rock dynamic disaster[J]. Journal of China University of Mining and Technology, 2018, 47(5): 942-948. | |
| [8] | SU Y, ZHAO Y, SUN M, et al. Detecting outlier machine instances through Gaussian mixture variational autoencoder with one dimensional CNN[J]. IEEE Transactions on Computers, 2022, 71(4): 892-905. |
| [9] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-09-10].. |
| [10] | DENG A, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4027-4035. |
| [11] | LIU D, HE C, PENG X, et al. MicroHECL: high-efficient root cause localization in large-scale microservice systems[C]// Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice. Piscataway: IEEE, 2021: 338-347. |
| [12] | CHEN P, QI Y, HOU D. CauseInfer: automated end-to-end performance diagnosis with hierarchical causality graph in cloud environment[J]. IEEE Transactions on Services Computing, 2019, 12(2): 214-230. |
| [13] | LIN J, CHEN P, ZHENG Z. Microscope: pinpoint performance issues with causal graphs in micro-service environments[C]// Proceedings of the 2018 International Conference on Service-Oriented Computing, LNCS 11236. Cham: Springer, 2018: 3-20. |
| [14] | WANG D, CHEN Z, NI J, et al. Interdependent causal networks for root cause localization[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 5051-5060. |
| [15] | GUO D, CHEN B, CHEN W, et al. Variational temporal deep generative model for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2020, 68: 5795-5809. |
| [16] | 蒋辉,闫秋艳,姜竹郡.面向多元时间序列异常检测的对称正定自编码器方法[J].计算机应用,2024,44(10):3294-3299. |
| JIANG H, YAN Q Y, JIANG Z J. Symmetric positive definite autoencoder method for multivariate time series anomaly detection[J]. Journal of Computer Applications, 2024, 44(10): 3294-3299. | |
| [17] | MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]// Proceedings of the 2016 International Workshop on Cyber-physical Systems for Smart Water Networks. Piscataway: IEEE, 2016: 31-36. |
| [18] | AHMED C M, PALLETI V R, MATHUR A P. WADI: a water distribution testbed for research in the design of secure cyber physical systems[C]// Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks. New York: ACM, 2017: 25-28. |
| [19] | 袁亮,王恩元,马衍坤,等.我国煤岩动力灾害研究进展及面临的科技难题[J].煤炭学报,2023,48(5):1825-1845. |
| YUAN L, WANG E Y, MA Y K, et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society, 2023, 48(5): 1825-1845. | |
| [20] | KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-04-19].. |
| [21] | SPIRTES P, GLYMOUR C N, SCHEINES R. Causation, prediction, and search[M]. 2nd ed. New York: MIT Press, 2001. |
| [22] | TANK A, COVERT I, FOTI N, et al. Neural Granger causality[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4267-4279. |
| [23] | PAMFIL R, SRIWATTANAWORACHAI N, DESAI S, et al. DYNOTEARS: structure learning from time-series data[C]// Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2020: 1595-1605. |
| [24] | NG I, GHASSAMI A, ZHANG K. On the role of sparsity and DAG constraints for learning linear DAGs[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17943-17954. |
| [1] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [2] | Zhixiong XU, Bo LI, Xiaoyong BIAN, Qiren HU. Adversarial sample embedded attention U-Net for 3D medical image segmentation [J]. Journal of Computer Applications, 2025, 45(9): 3011-3016. |
| [3] | Panfeng JING, Yudong LIANG, Chaowei LI, Junru GUO, Jinyu GUO. Semi-supervised image dehazing algorithm based on teacher-student learning [J]. Journal of Computer Applications, 2025, 45(9): 2975-2983. |
| [4] | Hongjun ZHANG, Gaojun PAN, Hao YE, Yubin LU, Yiheng MIAO. Multi-source heterogeneous data analysis method combining deep learning and tensor decomposition [J]. Journal of Computer Applications, 2025, 45(9): 2838-2847. |
| [5] | Jin LI, Liqun LIU. SAR and visible image fusion based on residual Swin Transformer [J]. Journal of Computer Applications, 2025, 45(9): 2949-2956. |
| [6] | Bing YIN, Zhenhua LING, Yin LIN, Changfeng XI, Ying LIU. Emotion recognition method compatible with missing modal reasoning [J]. Journal of Computer Applications, 2025, 45(9): 2764-2772. |
| [7] | Yanhua LIAO, Yuanxia YAN, Wenlin PAN. Multi-target detection algorithm for traffic intersection images based on YOLOv9 [J]. Journal of Computer Applications, 2025, 45(8): 2555-2565. |
| [8] | Kaile YU, Jiajun LIAO, Jiali MAO, Xiaopeng HUANG. Multi-objective optimization of steel logistics vehicle-cargo matching under multiple constraints [J]. Journal of Computer Applications, 2025, 45(8): 2477-2483. |
| [9] | Lina GE, Mingyu WANG, Lei TIAN. Review of research on efficiency of federated learning [J]. Journal of Computer Applications, 2025, 45(8): 2387-2398. |
| [10] | Peng PENG, Ziting CAI, Wenling LIU, Caihua CHEN, Wei ZENG, Baolai HUANG. Speech emotion recognition method based on hybrid Siamese network with CNN and bidirectional GRU [J]. Journal of Computer Applications, 2025, 45(8): 2515-2521. |
| [11] | Shuo ZHANG, Guokai SUN, Yuan ZHUANG, Xiaoyu FENG, Jingzhi WANG. Dynamic detection method of eclipse attacks for blockchain node analysis [J]. Journal of Computer Applications, 2025, 45(8): 2428-2436. |
| [12] | Jinxian SUO, Liping ZHANG, Sheng YAN, Dongqi WANG, Yawen ZHANG. Review of interpretable deep knowledge tracing methods [J]. Journal of Computer Applications, 2025, 45(7): 2043-2055. |
| [13] | Zhenzhou WANG, Fangfang GUO, Jingfang SU, He SU, Jianchao WANG. Robustness optimization method of visual model for intelligent inspection [J]. Journal of Computer Applications, 2025, 45(7): 2361-2368. |
| [14] | Qiaoling QI, Xiaoxiao WANG, Qianqian ZHANG, Peng WANG, Yongfeng DONG. Label noise adaptive learning algorithm based on meta-learning [J]. Journal of Computer Applications, 2025, 45(7): 2113-2122. |
| [15] | Xiaoyang ZHAO, Xinzheng XU, Zhongnian LI. Research review on explainable artificial intelligence in internet of things applications [J]. Journal of Computer Applications, 2025, 45(7): 2169-2179. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||