Journal of Computer Applications ›› 2026, Vol. 46 ›› Issue (1): 144-151.DOI: 10.11772/j.issn.1001-9081.2025020144
• Cyber security • Previous Articles Next Articles
Yingjie MA, Jingying QIN(
), Geng ZHAO, Jing XIAO
Received:2025-02-18
Revised:2025-05-25
Accepted:2025-05-28
Online:2026-01-10
Published:2026-01-10
Contact:
Jingying QIN
About author:MA Yingjie, born in 1979, Ph. D., associate professor. Her research interests include chaotic secure communication.Supported by:通讯作者:
覃晶滢
作者简介:马英杰(1979—),女,吉林通化人,副教授,博士,主要研究方向:混沌保密通信基金资助:CLC Number:
Yingjie MA, Jingying QIN, Geng ZHAO, Jing XIAO. Deep compressive sensing network for IoT images and its chaotic encryption protection method[J]. Journal of Computer Applications, 2026, 46(1): 144-151.
马英杰, 覃晶滢, 赵耿, 肖靖. 面向物联网图像的深度压缩感知网络及其混沌加密保护方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 144-151.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2025020144
| 方法 | 不同采样比r下的PSNR | 平均PSNR | ||||
|---|---|---|---|---|---|---|
| r=0.1 | r=0.2 | r=0.3 | r=0.4 | r=0.5 | ||
| DWT | 23.46 | 27.26 | 29.23 | 30.72 | 32.17 | 28.568 |
| MH | 25.16 | 28.09 | 29.85 | 31.35 | 32.86 | 29.462 |
| GSR | 25.91 | 29.18 | 31.33 | 33.20 | 34.94 | 30.912 |
| CSNet+ | 28.53 | 31.05 | 33.08 | 34.91 | 36.68 | 32.850 |
| 本文方法 | 28.78 | 32.47 | 33.42 | 35.51 | 37.10 | 33.456 |
Tab. 1 PSNR comparison of different methods on BSDS100 dataset
| 方法 | 不同采样比r下的PSNR | 平均PSNR | ||||
|---|---|---|---|---|---|---|
| r=0.1 | r=0.2 | r=0.3 | r=0.4 | r=0.5 | ||
| DWT | 23.46 | 27.26 | 29.23 | 30.72 | 32.17 | 28.568 |
| MH | 25.16 | 28.09 | 29.85 | 31.35 | 32.86 | 29.462 |
| GSR | 25.91 | 29.18 | 31.33 | 33.20 | 34.94 | 30.912 |
| CSNet+ | 28.53 | 31.05 | 33.08 | 34.91 | 36.68 | 32.850 |
| 本文方法 | 28.78 | 32.47 | 33.42 | 35.51 | 37.10 | 33.456 |
| 方法 | 不同采样比r下的SSIM | 平均SSIM | ||||
|---|---|---|---|---|---|---|
| r=0.1 | r=0.2 | r=0.3 | r=0.4 | r=0.5 | ||
| DWT | 0.634 3 | 0.751 6 | 0.810 8 | 0.852 4 | 0.886 2 | 0.787 0 |
| MH | 0.667 3 | 0.774 6 | 0.830 7 | 0.869 5 | 0.901 2 | 0.808 6 |
| GSR | 0.707 1 | 0.815 6 | 0.872 3 | 0.909 6 | 0.935 9 | 0.848 1 |
| CSNet+ | 0.783 4 | 0.872 1 | 0.917 1 | 0.944 3 | 0.961 8 | 0.895 7 |
| 本文方法 | 0.805 1 | 0.883 4 | 0.924 8 | 0.952 1 | 0.968 7 | 0.906 8 |
Tab. 2 SSIM comparison of different methods on BSDS100 datasets
| 方法 | 不同采样比r下的SSIM | 平均SSIM | ||||
|---|---|---|---|---|---|---|
| r=0.1 | r=0.2 | r=0.3 | r=0.4 | r=0.5 | ||
| DWT | 0.634 3 | 0.751 6 | 0.810 8 | 0.852 4 | 0.886 2 | 0.787 0 |
| MH | 0.667 3 | 0.774 6 | 0.830 7 | 0.869 5 | 0.901 2 | 0.808 6 |
| GSR | 0.707 1 | 0.815 6 | 0.872 3 | 0.909 6 | 0.935 9 | 0.848 1 |
| CSNet+ | 0.783 4 | 0.872 1 | 0.917 1 | 0.944 3 | 0.961 8 | 0.895 7 |
| 本文方法 | 0.805 1 | 0.883 4 | 0.924 8 | 0.952 1 | 0.968 7 | 0.906 8 |
| 统计检验 | P-value | 结果 |
|---|---|---|
| Frequency | 0.678 686 | Pass |
| BlockFrequency | 0.816 537 | Pass |
| CumulativeSums1 | 0.657 933 | Pass |
| CumulativeSums2 | 0.867 692 | Pass |
| Runs | 0.129 620 | Pass |
| LongestRun | 0.383 827 | Pass |
| Rank | 0.678 686 | Pass |
| FFT | 0.304 126 | Pass |
| NonOverlappingTemplate | 0.719 747 | Pass |
| OverlappingTemplate | 0.171 876 | Pass |
| Universal | 0.202 268 | Pass |
| ApproximateEntropy | 0.304 126 | Pass |
| RandomExcursions | 0.657 933 | Pass |
| RandomExcursionsVariant | 0.319 084 | Pass |
| Serial 1 | 0.699 313 | Pass |
| Serial 2 | 0.350 485 | Pass |
| LinearComplexity | 0.699 313 | Pass |
Tab. 3 NIST test results
| 统计检验 | P-value | 结果 |
|---|---|---|
| Frequency | 0.678 686 | Pass |
| BlockFrequency | 0.816 537 | Pass |
| CumulativeSums1 | 0.657 933 | Pass |
| CumulativeSums2 | 0.867 692 | Pass |
| Runs | 0.129 620 | Pass |
| LongestRun | 0.383 827 | Pass |
| Rank | 0.678 686 | Pass |
| FFT | 0.304 126 | Pass |
| NonOverlappingTemplate | 0.719 747 | Pass |
| OverlappingTemplate | 0.171 876 | Pass |
| Universal | 0.202 268 | Pass |
| ApproximateEntropy | 0.304 126 | Pass |
| RandomExcursions | 0.657 933 | Pass |
| RandomExcursionsVariant | 0.319 084 | Pass |
| Serial 1 | 0.699 313 | Pass |
| Serial 2 | 0.350 485 | Pass |
| LinearComplexity | 0.699 313 | Pass |
| 采样比 | SSIM | PSNR/dB |
|---|---|---|
| 0.1 | 0.825 7 | 29.47 |
| 0.2 | 0.904 9 | 32.54 |
| 0.3 | 0.940 1 | 34.71 |
| 0.4 | 0.961 4 | 36.43 |
| 0.5 | 0.970 8 | 38.21 |
Tab. 4 Evaluation of decrypted and reconstructed image quality by proposed method on SET14 dataset
| 采样比 | SSIM | PSNR/dB |
|---|---|---|
| 0.1 | 0.825 7 | 29.47 |
| 0.2 | 0.904 9 | 32.54 |
| 0.3 | 0.940 1 | 34.71 |
| 0.4 | 0.961 4 | 36.43 |
| 0.5 | 0.970 8 | 38.21 |
| 方法 | PSNR/dB | 加密图像信息熵 | 加密图像相邻像素相关性 | ||
|---|---|---|---|---|---|
| 水平方向 | 垂直方向 | 对角线方向 | |||
| 文献[ | 30.64 | 7.994 8 | -0.017 5 | 0.005 9 | -0.018 5 |
| 文献[ | 34.37 | 7.998 6 | -0.001 7 | 0.007 2 | -0.000 9 |
| 本文方法 | 41.57 | 7.993 5 | 0.000 4 | -0.007 9 | 0.005 1 |
Tab. 5 Comparison of encryption and decryption effects of different methods
| 方法 | PSNR/dB | 加密图像信息熵 | 加密图像相邻像素相关性 | ||
|---|---|---|---|---|---|
| 水平方向 | 垂直方向 | 对角线方向 | |||
| 文献[ | 30.64 | 7.994 8 | -0.017 5 | 0.005 9 | -0.018 5 |
| 文献[ | 34.37 | 7.998 6 | -0.001 7 | 0.007 2 | -0.000 9 |
| 本文方法 | 41.57 | 7.993 5 | 0.000 4 | -0.007 9 | 0.005 1 |
| [1] | LV T, LIN Z, HUANG P, et al. Optimization of the energy-efficient relay-based massive IoT network [J]. IEEE Internet of Things Journal, 2018, 5(4): 3043-3058. |
| [2] | LI X, XU L D. A review of Internet of Things — resource allocation [J]. IEEE Internet of Things Journal, 2021, 8(1): 8657-8666. |
| [3] | LI S, XU L D, WANG X. Compressed sensing signal and data acquisition in wireless sensor networks and Internet of Things [J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2177-2186. |
| [4] | LI Z, HUANG H, MISRA S. Compressed sensing via dictionary learning and approximate message passing for multimedia Internet of Things [J]. IEEE Internet of Things Journal, 2017, 4(2): 502-512. |
| [5] | YAMAÇ M, AHISHALI M, PASSALIS N, et al. Multi-level reversible data anonymization via compressive sensing and data hiding [J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1014-1028. |
| [6] | SUO Z, XIA C, JIANG D, et al. Multitiered reversible data privacy protection scheme for IoT based on compression sensing and digital watermarking [J]. IEEE Internet of Things Journal, 2024, 11(7): 11524-11539. |
| [7] | SHEN M, GAN H, NING C, et al. TransCS: a Transformer-based hybrid architecture for image compressed sensing [J]. IEEE Transactions on Image Processing, 2022, 31: 6991-7005. |
| [8] | ZHANG J, GHANEM B. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1828-1837. |
| [9] | SHI W, JIANG F, LIU S, et al. Image compressed sensing using convolutional neural network [J]. IEEE Transactions on Image Processing, 2020, 29: 375-388. |
| [10] | YOU D, XIE J, ZHANG J. ISTA-Net++: flexible deep unfolding network for compressive sensing [C]// Proceedings of the 2021 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2021: 1-6. |
| [11] | ZHANG M, ZHANG H, YUAN D, et al. Learning-based sparse data reconstruction for compressed data aggregation in IoT networks [J]. IEEE Internet of Things Journal, 2021, 8(14): 11732-11742. |
| [12] | ZHANG M, ZHANG H, ZHANG C, et al. Communication-efficient quantized deep compressed sensing for edge-cloud collaborative industrial IoT networks [J]. IEEE Transactions on Industrial Informatics, 2023, 19(5): 6613-6623. |
| [13] | CHANG Q, TAO D, WANG J, et al. Deep compressed sensing based data imputation for urban environmental monitoring [J]. ACM Transactions on Sensor Networks, 2024, 20(1): No.17. |
| [14] | CHEN B, TANG D, HUANG Y, et al. CMCL: cross-modal compressive learning for resource-constrained intelligent IoT systems [J]. IEEE Internet of Things Journal, 2024, 11(15): 25534-25542. |
| [15] | WANG M, WANG X, WANG C, et al. Spatiotemporal chaos in cross coupled map lattice with dynamic coupling coefficient and its application in bit-level color image encryption [J]. Chaos, Solitons and Fractals, 2020, 139: No.110028. |
| [16] | CHEN D, SUN Z, MA X, et al. Circuit implementation and model of a new multiscroll chaotic system [J]. International Journal of Circuit Theory and Applications, 2014, 42(4): 407-424. |
| [17] | BOUALLEGUE K. Generation of multi-scroll chaotic attractors from fractal and multi-fractal processes [C]// Proceedings of the 4th International Workshop on Chaos-Fractals Theories and Applications. Piscataway: IEEE, 2011: 398-402. |
| [18] | HE S, BANERJEE S. Multicavity formations and complexity modulation in a hyperchaotic discrete system [J]. Physica A: Statistical Mechanics and its Applications, 2018, 490: 366-377. |
| [19] | 摆玉龙,杨阳,唐丽红.一个新多涡卷混沌系统的设计及在图像加密中的应用[J].电子与信息学报, 2021, 43(2): 436-444. |
| BAI Y L, YANG Y, TANG L H. Design of a multi-scroll chaotic system and its application to image encryption [J]. Journal of Electronics and Information Technology, 2021, 43(2): 436-444. | |
| [20] | 徐昌彪,黎金龙,许浩南.一种基于Logistic电平脉冲的多涡卷系统及其图像加密应用[J].电子与信息学报, 2022, 44(12): 4328-4336. |
| XU C B, LI J L, XU H N. A multi-scroll system and its application for image encryption based on logistic level pulse [J]. Journal of Electronics and Information Technology, 2022, 44(12): 4328-4336. | |
| [21] | 刘思洋,安新磊,施倩倩,等.一类多涡卷Chua系统及其在图像加密中的应用[J].复杂系统与复杂性科学, 2024, 21(3): 85-92. |
| LIU S Y, AN X L, SHI Q Q, et al. A multi-scroll Chua system and its application in image encryption [J]. Complex Systems and Complexity Science, 2024, 21(3): 85-92. | |
| [22] | 赵耿,马英杰.混沌应用密码学[M].北京:科学出版社, 2021. |
| ZHAO G, MA Y J. Chaos applied cryptography [M]. Beijing: Science Press, 2021. | |
| [23] | ZHANG Y, TANG Y. A plaintext-related image encryption algorithm based on chaos [J]. Multimedia Tools and Applications, 2018, 77(6): 6647-6669. |
| [24] | LIU W, SUN K, HE S. SF-SIMM high-dimensional hyperchaotic map and its performance analysis [J]. Nonlinear Dynamics, 2017, 89(4): 2521-2532. |
| [25] | XIAO Y, SUN K, HE S. Constructing chaotic map with multi-cavity [J]. European Physical Journal Plus, 2020, 135: No.21. |
| [26] | WU C, SUN K, XIAO Y. A hyperchaotic map with multi-elliptic cavities based on modulation and coupling [J]. The European Physical Journal Special Topics, 2021, 230: 2011-2020. |
| [27] | MUN S, FOWLER J E. Block compressed sensing of images using directional transforms [C]// Proceedings of the 16th IEEE International Conference on Image Processing. Piscataway: IEEE, 2009: 3021-3024. |
| [28] | CHEN C, TRAMEL E W, FOWLER J E. Compressed-sensing recovery of images and video using multihypothesis predictions [C]// Proceedings of the 45th Asilomar Conference on Signals, Systems and Computers. Piscataway: IEEE, 2011: 1193-1198. |
| [29] | 马英杰,肖靖,赵耿,等.可控网格多涡卷混沌系统族及其硬件电路实现[J].计算机应用, 2023, 43(3): 956-961. |
| MA Y J, XIAO J, ZHAO G, et al. Controllable grid multi-scroll chaotic system family and its hardware circuit implementation [J]. Journal of Computer Applications, 2023, 43(3): 956-961. | |
| [30] | 潘涛,佟晓筠,张淼,等.基于压缩感知和超混沌系统的图像压缩加密方法[J].计算机科学, 2023, 50(6A): No.220200121. |
| PAN T, TONG X J, ZHANG M, et al. Image compression and encryption method based on compressed sensing and hyperchaotic system [J]. Computer Science, 2023, 50(6A): No.220200121. | |
| [31] | 范海菊,岳爽,窦育强,等.基于新型混沌系统和二进制块压缩感知的图像加密算法[J/OL].计算机科学[2025-05-07]. . |
| FAN H J, YUE S, DOU Y Q, et al. Image encryption algorithm based on a novel chaotic system and binary block compressed sensing [J/OL]. Computer Science [2025-05-07]. . |
| [1] | Yanan LI, Mengyang GUO, Guojun DENG, Yunfeng CHEN, Jianji REN, Yongliang YUAN. Method for life prediction of parallel branching engine based on multi-modal fusion features [J]. Journal of Computer Applications, 2026, 46(1): 305-313. |
| [2] | Lifang WANG, Wenjing REN, Xiaodong GUO, Rongguo ZHANG, Lihua HU. Trident generative adversarial network for low-dose CT image denoising [J]. Journal of Computer Applications, 2026, 46(1): 270-279. |
| [3] | Chaoyun MAI, Hongyi ZHANG, Chuanbo QIN, Junying ZENG, Dong WANG. Multi-scale and spatial frequency feature-based image segmentation network for pheochromocytoma [J]. Journal of Computer Applications, 2026, 46(1): 280-288. |
| [4] | Tingting WANG, Tingshun LI, Wen TAN, Bo LYU, Yixuan CHEN. Cable temperature prediction model based on multi-scale patch and convolution interaction [J]. Journal of Computer Applications, 2026, 46(1): 314-321. |
| [5] | Jinggang LYU, Shaorui PENG, Shuo GAO, Jin ZHOU. Speech enhancement network driven by complex frequency attention and multi-scale frequency enhancement [J]. Journal of Computer Applications, 2025, 45(9): 2957-2965. |
| [6] | Yiming LIANG, Jing FAN, Wenze CHAI. Multi-scale feature fusion sentiment classification based on bidirectional cross attention [J]. Journal of Computer Applications, 2025, 45(9): 2773-2782. |
| [7] | Weigang LI, Jiale SHAO, Zhiqiang TIAN. Point cloud classification and segmentation network based on dual attention mechanism and multi-scale fusion [J]. Journal of Computer Applications, 2025, 45(9): 3003-3010. |
| [8] | Xiang WANG, Zhixiang CHEN, Guojun MAO. Multivariate time series prediction method combining local and global correlation [J]. Journal of Computer Applications, 2025, 45(9): 2806-2816. |
| [9] | Jin ZHOU, Yuzhi LI, Xu ZHANG, Shuo GAO, Li ZHANG, Jiachuan SHENG. Modulation recognition network for complex electromagnetic environments [J]. Journal of Computer Applications, 2025, 45(8): 2672-2682. |
| [10] | Chengzhi YAN, Ying CHEN, Kai ZHONG, Han GAO. 3D object detection algorithm based on multi-scale network and axial attention [J]. Journal of Computer Applications, 2025, 45(8): 2537-2545. |
| [11] | Haifeng WU, Liqing TAO, Yusheng CHENG. Partial label regression algorithm integrating feature attention and residual connection [J]. Journal of Computer Applications, 2025, 45(8): 2530-2536. |
| [12] | Chao JING, Yutao QUAN, Yan CHEN. Improved multi-layer perceptron and attention model-based power consumption prediction algorithm [J]. Journal of Computer Applications, 2025, 45(8): 2646-2655. |
| [13] | Jinhao LIN, Chuan LUO, Tianrui LI, Hongmei CHEN. Thoracic disease classification method based on cross-scale attention network [J]. Journal of Computer Applications, 2025, 45(8): 2712-2719. |
| [14] | Chen LIANG, Yisen WANG, Qiang WEI, Jiang DU. Source code vulnerability detection method based on Transformer-GCN [J]. Journal of Computer Applications, 2025, 45(7): 2296-2303. |
| [15] | Liang CHEN, Xuan WANG, Kun LEI. Helmet wearing detection algorithm for complex scenarios based on cross-layer multi-scale feature fusion [J]. Journal of Computer Applications, 2025, 45(7): 2333-2341. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||