Journal of Computer Applications

    Next Articles

Multivariate time series prediction method combining local and global correlation#br#
#br#

WANG Xiang 1,2, CHEN Zhixiang1, MAO Guojun1,2   

  1. 1. School of Computer Science and Mathematics, Fujian University of Technology 2. Fujian Provincial Key Laboratory of Big Data Mining and Application (Fujian University of Technology)
  • Received:2024-09-05 Revised:2024-10-30 Online:2024-11-05 Published:2024-11-05
  • About author:WANG Xiang, born in 1992, Ph. D., associate professor. His research interests include artificial intelligence, graph neural networks and applications. CHEN Zhixiang, born in 1998, M. S. candidate. His research interests include deep learning, time series analysis. MAO Guojun, born in 1966, Ph. D., professor. His research interests include artificial intelligence, big data mining.
  • Supported by:
    National Key Research and Development Program Project of China (2019YFD0900900/05); Science and Technology Project of Fujian University of Technology (GY-Z21183)

融合局部和全局相关性的多变量时间序列预测方法

王翔1,2,陈志祥1,毛国君1,2   

  1. 1.福建理工大学 计算机科学与数学学院 2.福建省大数据挖掘与应用技术重点实验室(福建理工大学)
  • 通讯作者: 王翔
  • 作者简介:王翔(1992—),男,福建三明人,副教授,博士,CCF会员,主要研究方向:人工智能、图神经网络及应用;陈志祥(1998—),男,福建厦门人,硕士研究生,主要研究方向:深度学习、时间序列分析;毛国君(1966—),男,内蒙古赤峰人,教授,博士,主要研究方向:人工智能、大数据挖掘。
  • 基金资助:
    国家重点研发计划项目(2019YFD0900900/05);福建理工大学科技项目(GY-Z21183)

Abstract: Concerning the insufficient integration of local and global dependencies in existing time series models, a method for multivariate time series prediction namely PatchLG (Patch-integrated Local-Global correlation method) was proposed, which can better integrate both local and global correlations. The proposed method was based on three key components: 1) segmenting the time series into multiple patches, preserving the locality of the time series while making it easier for the model to capture global dependencies; 2) utilizing depthwise separable convolution and self-attention mechanism to model local and global correlations; 3) decomposing the time series into trend and seasonal components, and combining the predictions of these two components to obtain the final result. Experimental results on seven benchmark datasets demonstrate that PatchLG achieves an average improvement of 3.0% and 2.9% in Mean-Square Error (MSE) and Mean Absolute Error (MAE), respectively, compared to the optimal baseline method PatchTST, and possesses low actual running time and memory usage, validating the effectiveness of PatchLG in time series forecasting.

Key words: time series, multivariate time series prediction, depth-separable convolution, self-attention mechanism, local and global dependence

摘要: 为解决现有时间序列模型未能充分融合局部和全局依赖的问题,提出一种融合局部和全局相关性的多变量时间序列预测方法PatchLG(Patch-integrated Local-Global Correlation Method)。该方法基于3个关键部分:1)将时间序列划分为多个子序列(Patch),保持时间序列的局部性同时使模型更易于提取全局依赖;2)使用深度可分离卷积和自注意力机制建模局部和全局相关性;3)将时间序列分解为趋势项与季节项两个部分同时进行预测,并将预测结果组合起来得到最终预测结果。在7个基准数据集上的实验结果表明,PatchLG相较于最优基线方法PatchTST在均方误差(MSE)和平均绝对误差(MAE)两个指标上平均提升3.0%和2.9%,同时具有较低的实际运行时间和内存消耗,验证了PatchLG在时间序列预测的有效性。

关键词: 时间序列, 多变量时间序列预测, 深度可分离卷积, 自注意力机制, 局部与全局依赖

CLC Number: