Sigmoid inertia weight adjustment strategy with particle spacing feedback for PSO
ZUO Xu-kun1,SU Shou-bao1,2
1. Faculty of Information Engineering, West Anhui University, Lu’an Anhui 237012,China 2. Research Center of Satellite Technology, Harbin Institute of Technology, Harbin Heilongjiang 150080, China
[1]
KENNDEY J, EBERHART R C. Particle swarm optimization[C]// Proceedings of 1995 IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE Service Center, 1995: 1942-1948.
[2]
杨雪榕, 梁加红, 陈凌,等. 多邻域改进粒子群算法[J]. 系统工程与电子技术,2010, 32(11): 2453-2458.
[3]
吴宪祥, 郭宝龙, 王娟. 基于Lotka-Volterra模型的双群协同竞争粒子群优化算法[J]. 控制与决策,2010, 25(11): 1619-1624.
[4]
孙越泓, 魏建香, 夏德深. 一种基于粒子对称分布多样性的PSO算法[J]. 模式识别与人工智能,2010, 23(2): 137-144.
[5]
金义雄. 基于粒子群算法的输电网优化规划研究[D]. 上海: 上海交通大学, 2006.
[6]
刘志雄, 梁华. 粒子群算法中随机数参数的设置与实验分析[J]. 控制理论与应用,2010, 27(11): 1489-1496.
[7]
SHI Y, EBERHART R C. A modified particle swarm optimizer[C]// Proceedings of IEEE International Conference on Evolutionary Computation. Washington,DC: IEEE, 1998: 69-73.
[8]
黄翀鹏, 熊伟丽, 徐保国. 惯性权值对粒子群算法收敛性的影响及改进[J]. 计算机工程,2008, 34(12): 31-33.
[9]
SHI Y, EBERHART R C. Empirical study of particle swarm optimization[C]// Proceedings of the 1999 Congress on Evolutionary Computation.Washington,DC: IEEE, 1999: 1945-1950.
[10]
CHATTERJEE A, SIARRY P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers