Journal of Computer Applications

• Artificial intelligence • Previous Articles     Next Articles

PSO algorithm connected with neural network for solving a class of 0/1 optimization problems

Yu-hong DUAN Yue-lin GAO   

  • Received:2007-12-28 Revised:2008-02-25 Online:2008-06-01 Published:2008-06-01
  • Contact: Yu-hong DUAN

一类0/1优化问题融合神经网络的粒子群算法

段玉红 高岳林   

  1. 宁夏大学 数学与计算机学院 北方民族大学信息与系统科学研究所
  • 通讯作者: 段玉红

Abstract: A hybrid PSO algorithm was proposed, where the Hopfield manpower neural network with better local searching ability was combined with PSO for solving a class of 0/1 knapsack problem. The current global optimum chromosome activated the neural network and obtained a local optimum state that was used to replace the current global optimum chromosome in this algorithm. Local optimization ability of the algorithm was strengthened. Numerical test shows that this algorithm is effective.

Key words: Particle Swarm Optimization (PSO), neural network, 0/1 optimization problem

摘要: 将局部寻优能力极强的人工Hopfield神经网络算法融合到粒子群优化算法的搜索过程中,提出解决一类0/1优化问题融合神经网络的混合粒子群优化算法。在该算法中依粒子群当前全局最优个体为初始态激活神经网络,生成一个局部最优态,用这个局部最优态代替粒子群当前全局最优个体,增强了算法的局部寻优能力,通过数值试验证明该算法是有效的。

关键词: 粒子群优化, 神经网络, 0/1优化问题