Journal of Computer Applications ›› 2010, Vol. 30 ›› Issue (1): 146-149.
• Artificial intelligence • Previous Articles Next Articles
Received:
Revised:
Online:
Published:
张琎1,张远2
通讯作者:
基金资助:
Abstract: Multiple sequence alignment is an unsolved NP-complete combinatorial optimization problem. This paper described a new exhaustive genetic algorithm based on Gap Crossover and Gap Mutation (GC-GM) for multiple sequence alignment by genetic operation on gap matrixes reassembled. The approach was examined by using a set of standard instances taken from the benchmark alignment database BAliBASE. Numerical simulation results were compared with those obtained by using the Clustal W algorithm and showed the effectiveness of the new approach.
Key words: bioinformatics, Multiple Sequence Alignment (MSA), gap, crossover
摘要: 多序列比对问题是生物信息学中尚未解决的一个NP完全的组合优化问题。通过对重新组装的空位矩阵进行遗传操作来实现最优比对,设计了一个新型的基于GC-GM的多序列比对穷举遗传算法。从BAliBASE 比对数据库中选取了一些比对例子进行了模拟计算,并与Clustal-W算法进行了比较,实验表明该算法是有效的。
关键词: 生物信息学, 多序列比对, 空位, 交叉
张琎 张远. 基于GC-GM的多序列比对穷举遗传算法[J]. 计算机应用, 2010, 30(1): 146-149.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/
https://www.joca.cn/EN/Y2010/V30/I1/146